Skip to main content
Log in

Hypoxia modulates gene expression of IP3 receptors in rodent cerebellum

  • Cell and Molecular Physiology
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

Hypoxic brain cell injury is a complex process that results from a series of intracellular events. In this work, we tested whether severe hypoxia for 6 h can affect gene expression and protein levels of intracellular calcium channels, ryanodine receptors, and inositol 1,4,5-trisphosphate receptors in mouse cerebellum. In addition, we tested the effect of hypoxia on cerebellar granular cells of rats. We have found that gene expression of types 1 and 2 IP3 receptors is significantly increased after the exposure of mice to hypoxic stimulus for 6 h and also in rat cerebellar granular cells. Increased gene expression of IP3 receptors was reflected in increased protein levels of these channels as well. In this process, reactive oxygen species are most probably involved, as antioxidant quercetin abolished hypoxia-induced increase in both types 1 and 2 IP3 receptor. Ryanodine receptors of types 1 and 2 and sarco(endo)plasmic reticulum Ca2+-ATPase were not affected by hypoxia on the level of messenger RNA. To test physiological consequences, we measured levels of intracellular calcium. We observed significantly elevated calcium level in hypoxic compared to normoxic cells. Deeper understanding of mechanisms, through which hypoxia regulates intracellular calcium, could point towards the development of new therapeutic approaches to reduce or suppress the pathological effects of cellular hypoxia, such as those seen in stroke or ischemia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Balestrino M (1995) Pathophysiology of anoxic depolarization: new findings and a working hypothesis. J Neurosci Methods 59:99–103

    Article  PubMed  CAS  Google Scholar 

  2. Bickler PE, Hansen BM (1994) Causes of calcium accumulation in rat cortical brain slices during hypoxia and ischemia: role of ion channels and membrane damage. Brain Res 665:269–276

    Article  PubMed  CAS  Google Scholar 

  3. Bickler PE, Donohoe PH (2002) Adaptive responses of vertebrate neurons to hypoxia. J Exp Biol 205:3579–3586

    PubMed  CAS  Google Scholar 

  4. Bickler PE, Fahlman CS (2004) Moderate increases in intracellular calcium activate neuroprotective signals in hippocampal neurons. Neuroscience 127:673–683

    Article  PubMed  CAS  Google Scholar 

  5. Bigge CF (1999) Ionotropic glutamate receptors. Curr Opin Chem Biol 3:441–447

    Article  PubMed  CAS  Google Scholar 

  6. Boehning D, Patterson RL, Snyder SH (2004) Apoptosis and calcium: new roles for cytochrome c and inositol 1,4,5-trisphosphate. Cell Cycle 3:252–254

    PubMed  CAS  Google Scholar 

  7. Deelman LE, Jonk LJ, Henning RH (1998) The isolation and characterization of the promoter of the human type 1 inositol 1,4,5-trisphosphate receptor. Gene 207:219–225

    Article  PubMed  CAS  Google Scholar 

  8. Erecinska M, Silver IA (2001) Tissue oxygen tension and brain sensitivity to hypoxia. Respir Physiol 128:263–276

    Article  PubMed  CAS  Google Scholar 

  9. Erin N, Lehman RA, Boyer PJ, Billingsley ML (2003) In vitro hypoxia and excitotoxicity in human brain induce calcineurin–Bcl-2 interactions. Neuroscience 117:557–565

    Article  PubMed  CAS  Google Scholar 

  10. Furuichi T, Mikoshiba K (1995) Inositol 1, 4, 5-trisphosphate receptor-mediated Ca2+ signaling in the brain. J Neurochem 64:953–960

    Article  PubMed  CAS  Google Scholar 

  11. Genazzani AA, Carafoli E, Guerini D (1999) Calcineurin controls inositol 1,4,5-trisphosphate type 1 receptor expression in neurons. Proc Natl Acad Sci USA 96: 5797–5801

    Article  PubMed  CAS  Google Scholar 

  12. Hansen AJ (1985) Effect of anoxia on ion distribution in the brain. Physiol Rev 65:101–148

    PubMed  CAS  Google Scholar 

  13. Choi DW (1989) NMDA antagonists and hypoxic neuronal injury. J Neurosurg Anesthesiol 1:357–359

    Article  PubMed  CAS  Google Scholar 

  14. Choi DW (1995) Calcium: still center-stage in hypoxic-ischemic neuronal death. Trends Neurosci 18:58–60

    Article  PubMed  CAS  Google Scholar 

  15. Inoue T, Kato K, Kohda K, Mikoshiba K (1998) Type 1 inositol 1,4,5-trisphosphate receptor is required for induction of long-term depression in cerebellar Purkinje neurons. J Neurosci 18:5366–5373

    PubMed  CAS  Google Scholar 

  16. Kaplin AI, Snyder SH, Linden DJ (1996) Reduced nicotinamide adenine dinucleotide-selective stimulation of inositol 1,4,5-trisphosphate receptors mediates hypoxic mobilization of calcium. J Neurosci 16:2002–2011

    PubMed  CAS  Google Scholar 

  17. Koumenis C, Wouters BG (2006) “Translating” tumor hypoxia: unfolded protein response (UPR)-dependent and UPR-independent pathways. Mol Cancer Res 4:423–436

    Article  PubMed  CAS  Google Scholar 

  18. Krizanova O, Ondrias K (2003) The inositol 1,4,5-trisphosphate receptor-transcriptional regulation and modulation by phosphorylation. Gen Physiol Biophys 22:295–311

    PubMed  CAS  Google Scholar 

  19. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    PubMed  CAS  Google Scholar 

  20. Mailleux P, Takazawa K, Albala N, Erneux C, Vanderhaeghen JJ (1992) Comparison of neuronal inositol 1,4,5-trisphosphate 3-kinase and receptor mRNA distributions in the human brain using in situ hybridization histochemistry. Neurosci Lett 137:69–71

    Article  PubMed  CAS  Google Scholar 

  21. McConkey DJ, Orrenius S (1996) The role of calcium in the regulation of apoptosis. J Leukoc Biol 59:775–783

    PubMed  CAS  Google Scholar 

  22. Mishra OP, Qayyum I, Delivoria-Papadopoulos M (2003) Hypoxia-induced modification of the inositol triphosphate receptor in neuronal nuclei of newborn piglets: role of nitric oxide. J Neurosci Res 74:333–338

    Article  PubMed  CAS  Google Scholar 

  23. Morikawa K, Ohbayashi T, Nakagawa M, Konishi Y, Makino Y, Yamada M, Miyawaki A, Furuichi T, Mikoshiba K, Tamura T (1997) Transcription initiation sites and promoter structure of the mouse type 2 inositol 1,4,5-trisphosphate receptor gene. Gene 196:181–185

    Article  PubMed  CAS  Google Scholar 

  24. Nakagawa T, Okano H, Furuichi T, Aruga J, Mikoshiba K (1991) The subtypes of the mouse inositol 1,4,5-trisphosphate receptor are expressed in a tissue-specific and developmentally specific manner. Proc Natl Acad Sci USA 88:6244–6248

    Article  PubMed  CAS  Google Scholar 

  25. Nicotera P, Bano D (2003) The enemy at the gates. Ca2+ entry through TRPM7 channels and anoxic neuronal death. Cell 115:768–770

    Article  PubMed  CAS  Google Scholar 

  26. Nieber K (1999) Hypoxia and neuronal function under in vitro conditions. Pharmacol Ther 82:71–86

    Article  PubMed  CAS  Google Scholar 

  27. Nieber K, Eschke D, Brand A (1999) Brain hypoxia: effects of ATP and adenosine. Prog Brain Res 120:287–297

    Article  PubMed  CAS  Google Scholar 

  28. Oberdorf J, Vallano ML, Wojcikiewicz RJ (1997) Expression and regulation of types I and II inositol 1,4,5-trisphosphate receptors in rat cerebellar granule cell preparations. J Neurochem 69:1897–1903

    Article  PubMed  CAS  Google Scholar 

  29. Pisani A, Calabresi P, Bernardi G (1997) Hypoxia in striatal and cortical neurones: membrane potential and Ca2+ measurements. Neuroreport 8:1143–1147

    Article  PubMed  CAS  Google Scholar 

  30. Rossi DJ, Oshima T, Attwell D (2000) Glutamate release in severe brain ischaemia is mainly by reversed uptake. Nature 403:316–321

    Article  PubMed  CAS  Google Scholar 

  31. Seth M, Sumbilla C, Mullen SP, Lewis D, Klein MG, Hussain A, Soboloff J, Gill DL, Inesi G (2004) Sarco(endo)plasmic reticulum Ca2+ ATPase (SERCA) gene silencing and remodeling of the Ca2+ signaling mechanism in cardiac myocytes. Proc Natl Acad Sci USA 101:16683–16688

    Article  PubMed  CAS  Google Scholar 

  32. Shibasaki F, McKeon F (1995) Calcineurin functions in Ca(2+)-activated cell death in mammalian cells. J Cell Biol 131:735–743

    Article  PubMed  CAS  Google Scholar 

  33. Siesjo BK (1988) Historical overview. Calcium, ischemia, and death of brain cells. Ann NY Acad Sci 522:638–661

    Article  PubMed  CAS  Google Scholar 

  34. Siesjo BK, Bengtsson F (1989) Calcium fluxes, calcium antagonists, and calcium-related pathology in brain ischemia, hypoglycemia, and spreading depression: a unifying hypothesis. J Cereb Blood Flow Metab 9:127–140

    PubMed  CAS  Google Scholar 

  35. Szabo A, Perou CM, Karaca M, Perreard L, Quackenbush JF, Bernard PS (2004) Statistical modeling for selecting housekeeper genes. Genome Biol 5:R59

    Article  PubMed  Google Scholar 

  36. Szatkowski M, Attwell D (1994) Triggering and execution of neuronal death in brain ischaemia: two phases of glutamate release by different mechanisms. Trends Neurosci 17:359–365

    Article  PubMed  CAS  Google Scholar 

  37. Terada Y, Tomita K, Nonoguchi H, Yang T, Marumo F (1993) Expression of endothelin-3 mRNA along rat nephron segments using polymerase chain reaction. Kidney Int 44:1273–1280

    PubMed  CAS  Google Scholar 

  38. Toescu EC, Verkhratsky A, Landfield PW (2004) Ca2+ regulation and gene expression in normal brain aging. Trends Neurosci 27:614–620

    Article  PubMed  CAS  Google Scholar 

  39. Ueda Y, Nakagawa T, Kubota T, Ido K, Sato K (2005) Glioma cells under hypoxic conditions block the brain microvascular endothelial cell death induced by serum starvation. J Neurochem 95:99–110

    Article  PubMed  CAS  Google Scholar 

  40. Yakel JL (1997) Calcineurin regulation of synaptic function: from ion channels to transmitter release and gene transcription. Trends Pharmacol Sci 18:124–134

    Article  PubMed  CAS  Google Scholar 

  41. Zanelli SA, Spandou E, Mishra OP, Delivoria-Papadopoulos M (2005) Hypoxia modifies nuclear calcium uptake pathways in the cerebral cortex of the guinea-pig fetus. Neuroscience 130:949–955

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

This work was supported by grants VEGA 2/6078 and APVV 51-027-404.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O Krizanova.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jurkovicova, D., Kopacek, J., Stefanik, P. et al. Hypoxia modulates gene expression of IP3 receptors in rodent cerebellum. Pflugers Arch - Eur J Physiol 454, 415–425 (2007). https://doi.org/10.1007/s00424-007-0214-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-007-0214-6

Keywords

Navigation