Skip to main content

Advertisement

Log in

Molecular and functional characterization of Kv4.2 and KChIP2 expressed in the porcine left ventricle

  • Cardiovascular System
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

Recent studies showed that the Ca2+-independent transient outward current (I to) is very small or even not detectable in the porcine left ventricle. We investigated whether an altered molecular expression or function of voltage-dependent potassium channels belonging to the Kv4 sub-family and their ancillary Ca2+-binding β sub-unit KChIP2, which contribute to the major fraction of I to in other species, may underlie this lack of a significant I to in the porcine left ventricle. RT-PCR analysis with degenerate primers showed that both Kv4 mRNA and KChIP2 mRNA are expressed in porcine left ventricular tissue and in isolated ventricular myocytes. PCR cloning and sequence analysis predicted proteins with >98% identity to rat and human Kv4.2 and >99% identity to rat and human KChIP2. Heterologous expression of porcine Kv4.2 in Xenopus laevis oocytes gave rise to currents with characteristic properties of rat and human Kv4.2, and co-expression with its KChIP2 sub-unit increased current density (tenfold), slowed inactivation (twofold) and accelerated recovery from inactivation (tenfold). Kv4.2 immunohistochemistry in porcine left ventricular tissue revealed a predominant membrane-bound signal. Relative quantification of gene expression indicated that Kv4.2 and KChIP2 mRNA and protein are expressed at comparable ratios in porcine and rat left ventricular tissues, which displays a large I to. Collectively, these data demonstrate that the lack of a significant I to in the porcine left ventricle does not result from dysfunctional or insufficiently expressed Kv4.2 and KChIP2 sub-units.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Schram G, Pourrier M, Melnyk P, Nattel S (2002) Differential distribution of cardiac ion channel expression as a basis for regional specialization in electrical function. Circ Res 90:939–950

    Article  PubMed  CAS  Google Scholar 

  2. Apkon M, Nerbonne JM (1991) Characterization of two distinct depolarization-activated K+ currents in isolated adult rat ventricular myocytes. J Gen Physiol 97:973–1011

    Article  PubMed  CAS  Google Scholar 

  3. Xu H, Guo W, Nerbonne JM (1999) Four kinetically distinct depolarization-activated K+ currents in adult mouse ventricular myocytes. J Gen Physiol 113:661–6d78

    Article  PubMed  CAS  Google Scholar 

  4. Nerbonne JM, Nichols CG, Schwarz TL, Escande D (2001) Genetic manipulation of cardiac K+ channel function in mice: what have we learned, and where do we go from here? Circ Res 89:944–956

    PubMed  CAS  Google Scholar 

  5. Greenstein JL, Wu R, Po S, Tomaselli GF, Winslow RL (2000) Role of the calcium-independent transient outward current I to1 in shaping action potential morphology and duration. Circ Res 87:1026–1033

    PubMed  CAS  Google Scholar 

  6. Lacroix D, Gluais P, Marquié C, D’Hoinne C, Adamantidis M, Bastide M (2002) Repolarization abnormalities and their arrhythmogenic consequences in porcine tachycardia-induced cardiomyopathy. Cardiovasc Res 54:42–50

    Article  PubMed  CAS  Google Scholar 

  7. Näbauer M, Barth A, Kääb S (1997) Repolarization in pig left ventricle: absence of a relevant I to1 and control by I Kr and I Ks. Circulation 96(1):500 (Abstract)

    Google Scholar 

  8. Li GR, Du XL, Siow YL, O K, Tse HF, Lau CP (2003) Calcium-activated transient outward chloride current and phase 1 repolarization of swine ventricular action potential. Cardiovasc Res 58:89–98

    Article  PubMed  CAS  Google Scholar 

  9. An WF, Bowlby MR, Betty M, Cao J, Ling HP, Mendoza G, Hinson JW, Mattsson KI, Strassle BW, Trimmer JS, Rhodes KJ (2000) Modulation of A-type potassium channels by a family of calcium sensors. Nature 403:553–556

    Article  PubMed  CAS  Google Scholar 

  10. Bähring R, Dannenberg J, Peters HC, Leicher T, Pongs O, Isbrandt D (2001) Conserved Kv4 N-terminal domain critical for effects of Kv channel-interacting protein 2.2 on channel expression and gating. J Biol Chem 276:23888–23894

    Article  PubMed  Google Scholar 

  11. Shibata R, Misonou H, Campomanes CR, Anderson AE, Schrader LA, Doliveira LC, Carroll KI, Sweatt JD, Rhodes KJ, Trimmer JS (2003) A fundamental role for KChIPs in determining the molecular properties and trafficking of Kv4.2 potassium channels. J Biol Chem 278:36445–36454

    Article  PubMed  CAS  Google Scholar 

  12. Volk T, Nguyen TH, Schultz JH and Ehmke H (1999) Relationship between transient outward K+ current and Ca2+ influx in rat cardiac myocytes of endo- and epicardial origin. J Physiol 519:841–850

    Article  PubMed  CAS  Google Scholar 

  13. Chomczynski P, Sacchi N (1987) Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem 162:156–159

    Article  PubMed  CAS  Google Scholar 

  14. Schultz JH, Volk T, Ehmke H (2001) Heterogeneity of Kv2.1 mRNA expression and delayed rectifier current in single isolated myocytes from rat left ventricle. Circ Res 88:483–490

    PubMed  CAS  Google Scholar 

  15. Hamill OP, Marty A, Neher E, Sakmann B, Sigworth FJ (1981) Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflügers Arch 391:85–100

    Article  PubMed  CAS  Google Scholar 

  16. Sheng M, Tsaur ML, Jan YN, Jan LY (1992) Subcellular segregation of two A-type K+ channel proteins in rat central neurons. Neuron 9:271–284

    Article  PubMed  CAS  Google Scholar 

  17. Barry DM, Trimmer JS, Merlie JP, Nerbonne JM (1995) Differential expression of voltage-gated K+ channel subunits in adult rat heart. Relation to functional K+ channels? Circ Res 77:361–369

    PubMed  CAS  Google Scholar 

  18. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCt method. Methods 25:402–408

    Article  PubMed  CAS  Google Scholar 

  19. Clark RB, Bouchard RA, Salinas-Stefanon E, Sanchez-Chapula J, Giles WR (1993) Heterogeneity of action potential waveforms and potassium currents in rat ventricle. Cardiovasc Res 27:1795–1799

    PubMed  CAS  Google Scholar 

  20. Liu DW, Gintant GA and Antzelevitch C.(1993) Ionic bases for electrophysiological distinctions among epicardial, midmyocardial, and endocardial myocytes from the free wall of the canine left ventricle. Circ Res 72:671–687

    PubMed  CAS  Google Scholar 

  21. Wettwer E, Amos GJ, Posival H, Ravens U (1994) Transient outward current in human ventricular myocytes of subepicardial and subendocardial origin. Circ Res 75:473–482

    PubMed  CAS  Google Scholar 

  22. Gómez AM, Bénitah JP, Henzel D, Vinet A, Lorente P, Delgado C (1997) Modulation of electrical heterogeneity by compensated hypertrophy in rat left ventricle. Am J Physiol 272:H1078–H1086

    PubMed  Google Scholar 

  23. Mukherjee R, Hewett KW, Walker JD, Basler CG, Spinale FG (1998) Changes in L-type calcium channel abundance and function during the transition to pacing-induced congestive heart failure. Cardiovasc Res 37:432–444

    Article  PubMed  CAS  Google Scholar 

  24. Roberds SL, Tamkun MM (1991) Cloning and tissue-specific expression of five voltage-gated potassium channel cDNAs expressed in rat heart. Proc Natl Acad Sci USA 88:1798–1802

    Article  PubMed  CAS  Google Scholar 

  25. Isbrandt D, Leicher T, Waldschütz R, Zhu X, Luhmann U, Michel U, Sauter K, Pongs O (2000) Gene structures and expression profiles of three human KCND (Kv4) potassium channels mediating A-type currents I TO and I SA. Genomics 64:144–154

    Article  PubMed  CAS  Google Scholar 

  26. Litovsky SH, Antzelevitch C (1988) Transient outward current prominent in canine ventricular epicardium but not endocardium. Circ Res 62:116–126

    PubMed  CAS  Google Scholar 

  27. Näbauer M, Beuckelmann DJ, Überfuhr P, Steinbeck G (1996) Regional differences in current density and rate-dependent properties of the transient outward current in subepicardial and subendocardial myocytes of human left ventricle. Circulation 93:168–177

    PubMed  Google Scholar 

  28. Inoue M, Imanaga I (1993) Masking of A-type K+ channel in guinea pig cardiac cells by extracellular Ca2+. Am J Physiol 264:C1434–C1438

    PubMed  CAS  Google Scholar 

  29. Bailly P, Bénitah JP, Mouchonière M, Vassort G, Lorente P (1997) Regional alteration of the transient outward current in human left ventricular septum during compensated hypertrophy. Circulation 96:1266–1274

    PubMed  CAS  Google Scholar 

  30. Macianskiene R, Moccia F, Sipido KR, Flameng W, Mubagwa K (2002) Channels involved in transient currents unmasked by removal of extracellular calcium in cardiac cells. Am J Physiol Heart Circ Physiol 282:H1879–H1888

    PubMed  CAS  Google Scholar 

  31. Hess P, Lansman JB, Nilius B, Tsien RW (1986) Calcium channel types in cardiac myocytes: modulation by dihydropyridines and beta-adrenergic stimulation. J Cardiovasc Pharmacol 8 (Suppl 9):S11–S21

    PubMed  CAS  Google Scholar 

  32. Matsuda H (1986) Sodium conductance in calcium channels of guinea-pig ventricular cells induced by removal of external calcium ions. Pflügers Arch 407:465–475

    Article  PubMed  CAS  Google Scholar 

  33. Patel SP, Campbell DL, Morales MJ, Strauss HC (2002) Heterogeneous expression of KChIP2 isoforms in the ferret heart. J Physiol 539:649–656

    Article  PubMed  CAS  Google Scholar 

  34. Patel SP, Campbell DL, Strauss HC (2002) Elucidating KChIP effects on Kv4.3 inactivation and recovery kinetics with a minimal KChIP2 isoform. J Physiol 545:5–11

    Article  PubMed  CAS  Google Scholar 

  35. Birnbaum SG, Varga AW, Yuan LL, Anderson AE, Sweatt JD, Schrader LA (2004) Structure and function of Kv4-family transient potassium channels. Physiol Rev 84:803–833

    Article  PubMed  CAS  Google Scholar 

  36. Rosati B, Pan Z, Lypen S, Wang HS, Cohen I, Dixon JE, McKinnon D (2001) Regulation of KChIP2 potassium channel β subunit gene expression underlies the gradient of transient outward current in canine and human ventricle. J Physiol 533:119–125

    Article  PubMed  CAS  Google Scholar 

  37. Rosati B, Grau F, Rodriguez S, Li H, Nerbonne JM, McKinnon D (2003) Concordant expression of KChIP2 mRNA, protein and transient outward current throughout the canine ventricle. J Physiol 548:815–822

    Article  PubMed  CAS  Google Scholar 

  38. Wettwer E, Amos G, Gath J, Zerkowski HR, Reidemeister JC, Ravens U (1993) Transient outward current in human and rat ventricular myocytes. Cardiovasc Res 27:1662–1669

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are most grateful to R. Dussel and T. Kock for the technical assistance, and Priv. Doz. Dr. J. Zanzinger for the explantation of the porcine hearts. We gratefully acknowledge the donation of the Kv4.2 primary antibody by Prof. Dr. L.Y. Jan, and the donation of the pan-KChIP antibody by Prof. Dr. O. Pongs and Dr. D. Isbrandt. Supported by the Deutsche Forschungsgemeinschaft grants to H.E. and C.A.H (Graduiertenkolleg “Experimentelle Nieren- und Kreislaufforschung” and FOR 604).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heimo Ehmke.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schultz, JH., Volk, T., Bassalaý, P. et al. Molecular and functional characterization of Kv4.2 and KChIP2 expressed in the porcine left ventricle. Pflugers Arch - Eur J Physiol 454, 195–207 (2007). https://doi.org/10.1007/s00424-006-0203-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-006-0203-1

Keywords

Navigation