Skip to main content

Advertisement

Log in

Angiotensin type 1 (AT1) and type 2 (AT2) receptors mediate the increase in TGF-β1 in thyroid hormone-induced cardiac hypertrophy

  • Cardiovascular System
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

Increased thyroid hormone (TH) levels are known to induce cardiac hypertrophy. Some studies have provided evidence for a functional link between angiotensin II (ANG II) and transforming growth factor β1 (TGF-β1) in the heart, both being able to also induce cardiac hypertrophy. However, the contribution of this growth factor activated directly by TH or indirectly by ANG II in cardiac hypertrophy development remains unknown. To analyze the possible role of TGF-β1 in cardiac hypertrophy induced by TH and also to evaluate if the TGF-β1 effect is mediated by ANG II receptors, we employed Wistar rats separated into control, hypothyroid (hypo) and hyperthyroid (T4 − 10) groups combined or not with ANG II receptor blockers (losartan or PD123319). Serum levels of T3 and T4, systolic pressure and heart rate confirmed the thyroid state of the groups. The T4 − 10 group presented a significant increase in cardiac TGF-β1 levels; however, TGF-β1 levels in the hypo group did not change in relation to the control. Inhibition of the increase in cardiac TGF-β1 levels was observed in the groups treated with T4 in association with losartan or PD123319 when compared to the T4 − 10 group. These results demonstrate for the first time the TH-modulated induction of cardiac TGF-β1 in cardiac hypertrophy, and that this effect is mediated by ANG II receptors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Bassett JH, Harvey CB, Williams GR (2003) Mechanisms of thyroid hormone receptor-specific nuclear and extra nuclear actions. Mol Cell Endocrinol 213:1–11

    Article  PubMed  CAS  Google Scholar 

  2. Boluyt MO, O’Neill L, Meredith AL, Bing OH, Brooks WW, Conrad CH, Crow MT, Lakatta EG (1994) Alterations in cardiac gene expression during the transition from stable hypertrophy to heart failure. Marked upregulation of genes encoding extracellular matrix components. Circ Res 75:23–32

    PubMed  CAS  Google Scholar 

  3. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  4. Brand T, Schneider MD (1995) Inactive type II and type I receptors for TGF beta are dominant inhibitors of TGF beta-dependent transcription. J Biol Chem 270:8274–8284

    Article  PubMed  CAS  Google Scholar 

  5. Carneiro-Ramos MS, Silva VB, Santos RA, Barreto-Chaves ML (2006) Tissue-specific modulation of angiotensin-converting enzyme (ACE) in hyperthyroidism. Peptides 27:2942–2949

    Article  PubMed  CAS  Google Scholar 

  6. Cohn JN, Ferrari R, Sharpe N (2000) Cardiac remodeling–concepts and clinical implications: a consensus paper from an international forum on cardiac remodeling. Behalf of an international forum on cardiac remodeling. J Am Coll Cardiol 35:569–582

    Article  PubMed  CAS  Google Scholar 

  7. Giannocco G, DosSantos RA, Nunes MT (2004) Thyroid hormone stimulates myoglobin gene expression in rat cardiac muscle. Mol Cell Endocrinol 226:19–26

    Article  PubMed  CAS  Google Scholar 

  8. Hu LW, Benvenuti LA, Liberti EA, Carneiro-Ramos MS, Barreto-Chaves ML (2003) Thyroxine-induced cardiac hypertrophy: influence of adrenergic nervous system versus renin–angiotensin system on myocyte remodeling. Am J Physiol Regul Integr Comp Physiol 285:R1473–R1480

    PubMed  CAS  Google Scholar 

  9. Irvine SA, Foka P, Rogers SA, Mead JR, Ramji DP (2005) A critical role for the Sp1-binding sites in the transforming growth factor-beta-mediated inhibition of lipoprotein lipase gene expression in macrophages. Nucleic Acids Res 33:1423–1434

    Article  PubMed  CAS  Google Scholar 

  10. Klein I (1988) Thyroxine-induced cardiac hypertrophy: time course of development and inhibition by propranolol. Endocrinology 123:203–210

    Article  PubMed  CAS  Google Scholar 

  11. Kobori H, Ichihara A, Miyashita Y, Hayashi M, Saruta T (1999) Local renin–angiotensin system contributes to hyperthyroidism-induced cardiac hypertrophy. J Endocrinol 160:43–47

    Article  PubMed  CAS  Google Scholar 

  12. Li RK, Li G, Mickle DA, Weisel RD, Merante F, Luss H, Rao V, Christakis GT, Williams WG (1997) Overexpression of transforming growth factor-beta1 and insulin-like growth factor-I in patients with idiopathic hypertrophic cardiomyopathy. Circulation 96:874–881

    PubMed  CAS  Google Scholar 

  13. Liang F, Webb P, Marimuthu A, Zhang S, Gardner DG (2003) Triiodothyronine increases brain natriuretic peptide (BNP) gene transcription and amplifies endothelin-dependent BNP gene transcription and hypertrophy in neonatal rat ventricular myocytes. J Biol Chem 278:15073–15083

    Article  PubMed  CAS  Google Scholar 

  14. Liu YH, Yang XP, Sharov VG, Nass O, Sabbah HN, Peterson E, Carretero OA (1997) Effects of angiotensin-converting enzyme inhibitors and angiotensin II type 1 receptor antagonists in rats with heart failure. Role of kinins and angiotensin II type 2 receptors. J Clin Invest 99:1926–1935

    PubMed  CAS  Google Scholar 

  15. Morgan HE, Baker KM (1991) Cardiac hypertrophy. Mechanical, neural, and endocrine dependence. Circulation 83:13–25

    PubMed  CAS  Google Scholar 

  16. Nakajima H, Nakajima HO, Salcher O, Dittie AS, Dembowsky K, Jing S, Field LJ (2000) Atrial but not ventricular fibrosis in mice expressing a mutant transforming growth factor-beta(1) transgene in the heart. Circ Res 86:571–579

    PubMed  CAS  Google Scholar 

  17. Prada P, Okamoto MM, Furukawa LN, Machado UF, Heimann JC, Dolnikoff MS (2000) High- or low-salt diet from weaning to adulthood: effect on insulin sensitivity in Wistar rats. Hypertension 35:424–429

    PubMed  CAS  Google Scholar 

  18. Qureshi HY, Sylvester J, El Mabrouk M, Zafarullah M (2005) TGF-beta-induced expression of tissue inhibitor of metalloproteinases-3 gene in chondrocytes is mediated by extracellular signal-regulated kinase pathway and Sp1 transcription factor. J Cell Physiol 203:345–352

    Article  PubMed  CAS  Google Scholar 

  19. Rosenkranz S (2004) TGF-beta1 and angiotensin networking in cardiac remodeling. Cardiovasc Res 63:423–432

    Article  PubMed  CAS  Google Scholar 

  20. Rosenkranz S, Flesch M, Amann K, Haeuseler C, Kilter H, Seeland U, Schluter KD, Bohm M (2002) Alterations of beta-adrenergic signaling and cardiac hypertrophy in transgenic mice overexpressing TGF-beta(1). Am J Physiol, Heart Circ Physiol 283:H1253–H1262

    CAS  Google Scholar 

  21. Sadoshima J, Izumo S (1993) Molecular characterization of angiotensin II-induced hypertrophy of cardiac myocytes and hyperplasia of cardiac fibroblasts. Critical role of the AT1 receptor subtype. Circ Res 73:413–423

    PubMed  CAS  Google Scholar 

  22. Sanford CF, Griffin EE, Wildenthal K (1978) Synthesis and degradation of myocardial protein during the development and regression of thyroxine-induced cardiac hypertrophy in rats. Circ Res 43:688–694

    PubMed  CAS  Google Scholar 

  23. Schnee JM, Hsueh WA (2000) Angiotensin II, adhesion, and cardiac fibrosis. Cardiovasc Res 46:264–268

    Article  PubMed  CAS  Google Scholar 

  24. Schultz Jel J, Witt SA, Glascock BJ, Nieman ML, Reiser PJ, Nix SL, Kimball TR, Doetschman T (2002) TGF-beta1 mediates the hypertrophic cardiomyocyte growth induced by angiotensin II. J Clin Invest 109:787–796

    Article  PubMed  CAS  Google Scholar 

  25. Scott L, Kerr A, Haydock D, Merrilees M (1997) Subendothelial proteoglycan synthesis and transforming growth factor beta distribution correlate with susceptibility to atherosclerosis. J Vasc Res 34:365–377

    Article  PubMed  CAS  Google Scholar 

  26. Sernia C, Marchant C, Brown L, Hoey A (1993) Cardiac angiotensin receptors in experimental hyperthyroidism in dogs. Cardiovasc Res 27:423–428

    Article  PubMed  CAS  Google Scholar 

  27. Siehl D, Chua BH, Lautensack-Belser N, Morgan HE (1985) Faster protein and ribosome synthesis in thyroxine-induced hypertrophy of rat heart. Am J Physiol 248:C309–C319

    PubMed  CAS  Google Scholar 

  28. Soufla G, Porichis F, Sourvinos G, Vassilaros S, Spandidos DA (2006) Transcriptional deregulation of VEGF, FGF2, TGF-beta1, 2, 3 and cognate receptors in breast tumorigenesis. Cancer Lett 235:100–113

    Article  PubMed  CAS  Google Scholar 

  29. van Wamel AJ, Ruwhof C, van der Valk-Kokshoorn LJ, Schrier PI, van der Laarse A (2002) Stretch-induced paracrine hypertrophic stimuli increase TGF-beta1 expression in cardiomyocytes. Mol Cell Biochem 236:147–153

    Article  PubMed  Google Scholar 

  30. Wada H, Zile MR, Ivester CT, Cooper Gt, McDermott PJ (1996) Comparative effects of contraction and angiotensin II on growth of adult feline cardiocytes in primary culture. Am J Physiol 271:H29–H37

    PubMed  CAS  Google Scholar 

  31. Wenzel S, Schorr K, Degenhardt H, Frischkopf K, Kojda G, Wiesner RJ, Rosenkranz S, Piper HM, Schluter KD (2001) TGF-beta(1) downregulates PTHrP in coronary endothelial cells. J Mol Cell Cardiol 33:1181–1190

    Article  PubMed  CAS  Google Scholar 

  32. Williams LT, Lefkowitz RJ, Watanabe AM, Hathaway DR, Besch HR Jr (1977) Thyroid hormone regulation of beta-adrenergic receptor number. J Biol Chem 252:2787–2789

    PubMed  CAS  Google Scholar 

  33. Zhang X, Yang J, Li Y, Liu Y (2005) Both Sp1 and Smad participate in mediating TGF-beta1-induced HGF receptor expression in renal epithelial cells. Am J Physiol Renal Physiol 288:F16–F26

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

G. P. Diniz and M. S. Carneiro-Ramos contributed equally to this work. We thank Dr. Patricia Gama from Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of Sao Paulo for providing the primary antibody against TGF-β. This study received financial support in the form of grants from the Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP, Foundation for the Support of Research in the State of São Paulo; grants 06/51270-4).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. L. M. Barreto-Chaves.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Diniz, G.P., Carneiro-Ramos, M.S. & Barreto-Chaves, M.L.M. Angiotensin type 1 (AT1) and type 2 (AT2) receptors mediate the increase in TGF-β1 in thyroid hormone-induced cardiac hypertrophy. Pflugers Arch - Eur J Physiol 454, 75–81 (2007). https://doi.org/10.1007/s00424-006-0192-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-006-0192-0

Keywords

Navigation