Skip to main content

Advertisement

Log in

Repression of anti-apoptotic genes via AP-1 as a mechanism of apoptosis induction in ventricular cardiomyocytes

  • Cardiovascular System
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

Nitric oxide (NO) is increased under several pathophysiological, mainly inflammatory processes in the heart and has been characterized as an inducer of apoptosis in cardiomyocytes. The transcription factor activating protein-1 (AP-1) has been identified as a mediator of NO-induced apoptosis. Genes that are regulated by AP-1 under apoptotic conditions have not been identified yet. Therefore, we performed a microarray analysis with subsequent real-time polymerase chain reaction (PCR) to identify genes regulated by AP-1 in NO-induced ventricular cardiomyocytes of rats and tested the functional role of these genes in apoptosis. Cardiomyocytes were transformed with AP-1 decoy oligonucleotides for inhibition of AP-1 activity. These, as well as non-transformed control cells, were stimulated with the NO donor (±)-S-nitroso-N-acetylpenicillamine (SNAP, 100 μM) for 2 h. Some of the genes with differential gene expression on microarrays were further analysed by real-time PCR. Genes that are induced by SNAP were not identified. However, four genes, pyridoxal kinase, heat shock protein 10 (Hsp10), antigen identified by monoclonal antibodies 4F2 (4F2) and myosin light chain 2, were downregulated by SNAP in presence of AP-1. Pyridoxal kinase, Hsp10 and 4F2 have anti-apoptotic effects in unstimulated cells because downregulation of their expression by antisense oligos induced apoptosis in cardiomyocytes. An involvement of these genes in NO-induced apoptosis could only be proven for pyridoxal kinase. In conclusion, using microarray technology, we identified three anti-apoptotic genes (Hsp10, 4F2 and pyridoxal kinase) in ventricular cardiomyocytes, which may help the cells to resist some apoptotic stimuli. The downregulation of these genes results in cardiomyocyte apoptosis. Prevention of their downregulation may protect cardiomyocytes against apoptotic stimuli, and this may be of therapeutic benefit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Croft DR, Coleman ML, Li S, Robertson D, Sullivan T, Stewart CL, Olson MF (2005) Actin-myosin-based contraction is responsible for apoptotic nuclear disintegration. J Cell Biol 168:245–255

    Article  PubMed  CAS  Google Scholar 

  2. Cornelius T, Holmer SR, Muller FU, Riegger GA, Schunkert H (1997) Regulation of the rat atrial natriuretic peptide gene after acute imposition of left ventricular pressure overload. Hypertension 30:1348–1355

    PubMed  CAS  Google Scholar 

  3. Ellis JM, McCully KS (1995) Prevention of myocardial infarction by vitamin B6. Res Commun Mol Pathol Pharmacol 89:208–220

    PubMed  CAS  Google Scholar 

  4. Freeman WM, Robertson DJ, Vrana KE (2000) Fundamentals of DNA hybridization arrays for gene expression analysis. BioTechniques 29:1042–1046, 1048–1055

    PubMed  CAS  Google Scholar 

  5. Godfrey K (1985) Comparing the means of several groups. N Engl J Med 313:1450–1456

    Article  PubMed  CAS  Google Scholar 

  6. Jeong MY, Kinugawa K, Vinson C, Long CS (2005) AFos dissociates cardiac myocyte hypertrophy and expression of the pathological gene program. Circulation 111(13):1645–1651

    Article  PubMed  CAS  Google Scholar 

  7. Kirch HC, Flaswinkel S, Rumpf H, Brockmann D, Esche H (1999) Expression of human p53 requires synergistic activation of transcription from the p53 promoter by AP-1, NF-kappaB and Myc/Max. Oncogene 18:2728–2738

    Article  PubMed  CAS  Google Scholar 

  8. Lin KM, Lin B, Lian IY, Mestril R, Scheffler IE, Dillmann WH (2001) Combined and individual mitochondrial HSP60 and HSP10 expression in cardiac myocytes protects mitochondrial function and prevents apoptotic cell deaths induced by simulated ischemia-reoxygenation. Circulation 103:1787–1792

    PubMed  CAS  Google Scholar 

  9. Lin KM, Hollander JM, Kao VY, Lin B, Macpherson L, Dillmann WH (2004) Myocyte protection by 10 kD heat shock protein (Hsp10) involves the mobile loop and attenuation of the Ras GTP-ase pathway. FASEB J 18:1004–1006

    PubMed  CAS  Google Scholar 

  10. Mechta-Grigoriou F, Gerald D, Yaniv M (2001) The mammalian Jun proteins: redundancy and specificity. Oncogene 20:2378–2389

    Article  PubMed  CAS  Google Scholar 

  11. Moniotte S, Vaerman JL, Kockx MM, Larrouy D, Langin D, Noirhomme P, Balligand JL (2001) Real-time RT-PCR for the detection of beta-adrenoceptor messenger RNAs in small human endomyocardial biopsies. J Mol Cell Cardiol 33:2121–2133

    Article  PubMed  CAS  Google Scholar 

  12. Parmacek MS, Karpinski BA, Gottesdiener KM, Thompson CB, Leiden JM (1989) Structure, expression and regulation of the murine 4F2 heavy chain. Nucleic Acids Res 17:1915–1931

    Article  PubMed  CAS  Google Scholar 

  13. Petrache I, Birukov K, Zaiman AL, Crow MT, Deng H, Wadgaonkar R, Romer LH, Garcia JG (2003) Caspase-dependent cleavage of myosin light chain kinase (MLCK) is involved in TNF-alpha-mediated bovine pulmonary endothelial cell apoptosis. FASEB J 17:407–416

    Article  PubMed  CAS  Google Scholar 

  14. Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29(9):e45

    Article  PubMed  CAS  Google Scholar 

  15. Pham V, Zhang W, Chen V, Whitney T, Yao J, Froese D, Friesen AD, Diakur JM, Haque W (2003) Design and synthesis of novel pyridoxine 5′-phosphonates as potential antiischemic agents. J Med Chem 46:3680–3687

    Article  PubMed  CAS  Google Scholar 

  16. Pineda M, Fernandez E, Torrents D, Estevez R, Lopez C, Camps M, Lloberas J, Zorzano A, Palacin M (1999) Identification of a membrane protein, LAT-2, that Co-expresses with 4F2 heavy chain, an l-type amino acid transport activity with broad specificity for small and large zwitterionic amino acids. J Biol Chem 274:19738–19744

    Article  PubMed  CAS  Google Scholar 

  17. Piper HM, Probst I, Hütter JF, Spiekermann PG (1982) Culturing of calcium stable adult cardiac myocytes. J Mol Cell Cardiol 14:397–412

    Article  PubMed  CAS  Google Scholar 

  18. Piu F, Aronheim A, Katz S, Karin M (2001) AP-1 repressor protein JDP-2: inhibition of UV-mediated apoptosis through p53 down-regulation. Mol Cell Biol 21:3012–3024

    Article  PubMed  CAS  Google Scholar 

  19. Regula KM, Kirshenbaum LA (2001) p53 activates the mitochondrial death pathway and apoptosis of ventricular myocytes independent of de novo gene transcription. J Mol Cell Cardiol 33:1435–1445

    Article  PubMed  CAS  Google Scholar 

  20. Schneiders D, Heger J, Best P, Michael Piper H, Taimor G (2005) SMAD proteins are involved in apoptosis induction in ventricular cardiomyocytes. Cardiovasc Res 67:87–96

    Article  PubMed  CAS  Google Scholar 

  21. Serfontein WJ, Ubbink JB, De Villiers LS, Rapley CH, Becker PJ (1985) Plasma pyridoxal-5-phosphate level as risk index for coronary artery disease. Atherosclerosis 55:357–361

    Article  PubMed  CAS  Google Scholar 

  22. Shimojo T, Hiroe M, Ishiyama S, Ito H, Nishikawa T, Marumo F (1999) Nitric oxide induces apoptotic death of cardiomyocytes via a cyclic-GMP-dependent pathway. Exp Cell Res 247:38–47

    Article  PubMed  CAS  Google Scholar 

  23. Snoeckx LH, Cornelussen RN, Van Nieuwenhoven FA, Reneman RS, Van Der Vusse GJ (2001) Heat shock proteins and cardiovascular pathophysiology. Physiol Rev 81:1461–1497

    PubMed  CAS  Google Scholar 

  24. Szabolcs MJ, Ma N, Athan E, Zhong J, Ming M, Sciacca RR, Husemann J, Albala A, Cannon PJ (2001) Acute cardiac allograft rejection in nitric oxide synthase-2(−/−) and nitric oxide synthase-2(+/+) mice: effects of cellular chimeras on myocardial inflammation and cardiomyocyte damage and apoptosis. Circulation 103:2514–2520

    PubMed  CAS  Google Scholar 

  25. Taimor G, Hofstaetter B, Piper HM (2000) Apoptosis induction by NO in adult cardiomyocytes via cGMP-signaling and its impairment after simulated ischemia. Cardiovasc Res 45:588–594

    Article  PubMed  CAS  Google Scholar 

  26. Taimor G, Rakow A, Piper HM (2001) Transcription activator protein 1 (AP-1) mediates NO-induced apoptosis of adult cardiomyocytes. FASEB J 15:2518–2520

    PubMed  CAS  Google Scholar 

  27. Taimor G, Schluter KD, Best P, Helmig S, Piper HM (2004) Transcription activator protein 1 mediates alpha- but not beta-adrenergic hypertrophic growth responses in adult cardiomyocytes. Am J Physiol Heart Circ Physiol 286:H2369–H2375

    Article  PubMed  CAS  Google Scholar 

  28. Wildhirt SM, Weismueller S, Schulze C, Conrad N, Kornberg A, Reichart B (1999) Inducible nitric oxide synthase activation after ischemia/reperfusion contributes to myocardial dysfunction and extent of infarct size in rabbits: evidence for a late phase of nitric oxide-mediated reperfusion injury. Cardiovasc Res 43:698–711

    Article  PubMed  CAS  Google Scholar 

  29. Yin F, Bruemmer D, Blaschke F, Hsueh WA, Law RE, Herle AJ (2004) Signaling pathways involved in induction of GADD45 gene expression and apoptosis by troglitazone in human MCF-7 breast carcinoma cells. Oncogene 23:4614–4623

    Article  PubMed  CAS  Google Scholar 

  30. Yoo J, Ghiassi M, Jirmanova L, Balliet AG, Hoffman B, Fornace AJ Jr, Liebermann DA, Bottinger EP, Roberts AB (2003) Transforming growth factor-beta-induced apoptosis is mediated by Smad-dependent expression of GADD45b through p38 activation. J Biol Chem 278:43001–43007

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

The authors thank Sergej Kechter, Daniela Schreiber and Birgit Störr for an excellent technical assistance. This study was supported by the Philip Morris Grant, Pi 162/11-3 and by the Deutsche Forschungsgemeinschaft, EU 121/2-3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Euler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schlieper, A., Anwar, M., Heger, J. et al. Repression of anti-apoptotic genes via AP-1 as a mechanism of apoptosis induction in ventricular cardiomyocytes. Pflugers Arch - Eur J Physiol 454, 53–61 (2007). https://doi.org/10.1007/s00424-006-0180-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-006-0180-4

Keywords

Navigation