Skip to main content
Log in

Functional effects of the DCM mutant Gly159Asp Troponin C in skinned muscle fibres

  • Cardiovascular System
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

We recently reported a dilated cardiomyopathy (DCM) causing mutation in a novel disease gene, TNNC1, which encodes cardiac troponin C (TnC). We have determined how this mutation, Gly159Asp, affects contractile regulation when incorporated into muscle fibres. Endogenous troponin in rabbit skinned psoas fibres was partially replaced by recombinant human cardiac troponin containing either wild-type or Gly159Asp TnC. We measured both the force–pCa relationship of these fibres and the activation rate using the caged-Ca2+ compound nitrophenyl-EGTA. Gly159Asp TnC had no significant effect on either the Ca2+ sensitivity or cooperativity of force generation when compared to wild type. However, the mutation caused a highly significant (ca. 50%) decrease in the rate of activation. This study shows that whilst not affecting the force–pCa relationship, the mutation Gly159Asp causes a significant decrease in the rate of force production and a change in the relationship between the rate of force production and generated force. In vivo, this mutation may cause both a slowing of force generation and reduction in total systolic force. This represents a novel mechanism by which a cardiomyopathy-causing mutation can affect contractility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Spirito P, Maron BJ, Bonow RO, Epstein SE (1987) Occurrence and significance of progressive left ventricular wall thinning and relative cavity dilatation in hypertrophic cardiomyopathy. Am J Cardiol 60:123–129

    Article  PubMed  CAS  Google Scholar 

  2. Seidman JG, Seidman C (2001) The genetic basis for cardiomyopathy: from mutation identification to mechanistic paradigms. Cell 104:557–567

    Article  PubMed  CAS  Google Scholar 

  3. Baig MK, Goldman JH, Caforio AL, Coonar AS, Keeling PJ, McKenna WJ (1998) Familial dilated cardiomyopathy: cardiac abnormalities are common in asymptomatic relatives and may represent early disease. J Am Coll Cardiol 31:195–201

    Article  PubMed  CAS  Google Scholar 

  4. Olson TM, Michels VV, Thibodeau SN, Tai YS, Keating MT (1998) Actin mutations in dilated cardiomyopathy, a heritable form of heart failure. Science 280:750–752

    Article  PubMed  CAS  Google Scholar 

  5. Kamisago M et al (2000) Mutations in sarcomere protein genes as a cause of dilated cardiomyopathy. N Engl J Med 343:1688–1696

    Article  PubMed  CAS  Google Scholar 

  6. Olson TM, Kishimoto NY, Whitby FG, Michels VV (2001) Mutations that alter the surface charge of alpha-tropomyosin are associated with dilated cardiomyopathy. J Mol Cell Cardiol 33:723–732

    Article  PubMed  CAS  Google Scholar 

  7. Gerull B et al (2002) Mutations of TTN, encoding the giant muscle filament titin, cause familial dilated cardiomyopathy. Nat Genet 30:201–204

    Article  PubMed  CAS  Google Scholar 

  8. Hernandez OM, Housmans PR, Potter JD (2001) Invited review: pathophysiology of cardiac muscle contraction and relaxation as a result of alterations in thin filament regulation. J Appl Physiol 90:1125–1136

    PubMed  CAS  Google Scholar 

  9. Morimoto S, Lu QW, Harada K, Takahashi-Yanaga F, Minakami R, Ohta M, Sasaguri T, Ohtsuki I (2002) Ca2+-desensitizing effect of a deletion mutation delta K210 in cardiac troponin T that causes familial dilated cardiomyopathy. Proc Natl Acad Sci USA 99(2):913–918

    Article  PubMed  CAS  Google Scholar 

  10. Robinson P, Mirza M, Knott A, Abdulrazzak H, Willott R, Marston S, Watkins H, Redwood C (2002) Alterations in thin filament regulation induced by a human cardiac troponin T mutant that causes dilated cardiomyopathy are distinct from those induced by troponin T mutants that cause hypertrophic cardiomyopathy. J Biol Chem 277:40710–40716

    Article  PubMed  CAS  Google Scholar 

  11. Lu QW, Morimoto S, Harada K, Du CK, Takahashi-Yanaga F, Miwa Y, Sasaguri T, Ohtsuki I (2003) Cardiac troponin T mutation R141W found in dilated cardiomyopathy stabilizes the troponin T–tropomyosin interaction and causes a Ca2+ desensitization. J Mol Cell Cardiol 35:1421–1427

    Article  PubMed  CAS  Google Scholar 

  12. Venkatraman G, Harada K, Gomes AV, Kerrick WG, Potter JD (2003) Different functional properties of troponin T mutants that cause dilated cardiomyopathy. J Biol Chem 278:41670–41676

    Article  PubMed  CAS  Google Scholar 

  13. Mirza M et al (2005) Dilated cardiomyopathy mutations in three thin filament regulatory proteins result in a common functional phenotype. J Biol Chem 280:28498–28506

    Article  PubMed  CAS  Google Scholar 

  14. Mogensen J et al (2004) Severe disease expression of cardiac troponin C and T mutations in patients with idiopathic dilated cardiomyopathy. J Am Coll Cardiol 44:2033–2040

    Article  PubMed  CAS  Google Scholar 

  15. Griffiths PJ, Jones A (1994) A simple device for transfer of single muscle fibres by rotation between 70 μl chambers while making optical measurements. J Physiol (London) 480:5

    Google Scholar 

  16. Lipscomb-Allhouse S, Mulligan IP, Ashley CC (2001) The effects of the inotropic agent EMD 57033 on activation and relaxation kinetics in frog skinned skeletal muscle. Pflugers Arch 442:171–177

    Article  PubMed  CAS  Google Scholar 

  17. Lipscomb S, Preston LC, Robinson P, Redwood CS, Mulligan IP, Ashley CC (2005) Effects of troponin C isoform on the action of the cardiotonic agent EMD 57033. Biochem J 388:905–912

    Article  PubMed  CAS  Google Scholar 

  18. Ellis-Davies GC, Kaplan JH (1994) Nitrophenyl–EGTA, a photolabile chelator that selectively binds Ca2+ with high affinity and releases it rapidly upon photolysis. Proc Natl Acad Sci USA 91:187–191

    Article  PubMed  CAS  Google Scholar 

  19. Ashley CC, Mulligan IP, Lea TJ (1991) Ca2+ and activation mechanisms in skeletal muscle. Q Rev Biophys 24:1–73

    Article  PubMed  CAS  Google Scholar 

  20. Martin H, Bell MG, Ellis-Davies GC, Barsotti RJ (2004) Activation kinetics of skinned cardiac muscle by laser photolysis of nitrophenyl–EGTA. Biophys J 86:978–990

    Article  PubMed  CAS  Google Scholar 

  21. Szczesna D, Guzman G, Miller T, Zhao J, Farokhi K, Ellemberger H, Potter JD (1996) The role of the four Ca2+ binding sites of troponin C in the regulation of skeletal muscle contraction. J Biol Chem 271:8381–8386

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

This work was funded by the British Heart Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles S. Redwood.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Preston, L.C., Lipscomb, S., Robinson, P. et al. Functional effects of the DCM mutant Gly159Asp Troponin C in skinned muscle fibres. Pflugers Arch - Eur J Physiol 453, 771–776 (2007). https://doi.org/10.1007/s00424-006-0161-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-006-0161-7

Keywords

Navigation