Skip to main content

Advertisement

Log in

High extracellular K+ evokes changes in voltage-dependent K+ and Na+ currents and volume regulation in astrocytes

  • Cellular Neurophysiology
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

[K+]e increase accompanies many pathological states in the CNS and evokes changes in astrocyte morphology and glial fibrillary acidic protein expression, leading to astrogliosis. Changes in the electrophysiological properties and volume regulation of astrocytes during the early stages of astrocytic activation were studied using the patch-clamp technique in spinal cords from 10-day-old rats after incubation in 50 mM K+. In complex astrocytes, incubation in high K+ caused depolarization, an input resistance increase, a decrease in membrane capacitance, and an increase in the current densities (CDs) of voltage-dependent K+ and Na+ currents. In passive astrocytes, the reversal potential shifted to more positive values and CDs decreased. No changes were observed in astrocyte precursors. Under hypotonic stress, astrocytes in spinal cords pre-exposed to high K+ revealed a decreased K+ accumulation around the cell membrane after a depolarizing prepulse, suggesting altered volume regulation. 3D confocal morphometry and the direct visualization of astrocytes in enhanced green fluorescent protein/glial fibrillary acidic protein mice showed a smaller degree of cell swelling in spinal cords pre-exposed to high K+ compared to controls. We conclude that exposure to high K+, an early event leading to astrogliosis, caused not only morphological changes in astrocytes but also changes in their membrane properties and cell volume regulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Anderova M, Antonova T, Petrik D, Neprasova H, Chvatal A, Sykova E (2004) Voltage-dependent potassium currents in hypertrophied rat astrocytes after a cortical stab wound. Glia 48:311–326

    Article  PubMed  Google Scholar 

  2. Anderova M, Kubinova S, Mazel T, Chvatal A, Eliasson C, Pekny M, Sykova E (2001) Effect of elevated K(+), hypotonic stress, and cortical spreading depression on astrocyte swelling in GFAP-deficient mice. Glia 35:189–203

    Article  PubMed  CAS  Google Scholar 

  3. Bonthius DJ, Lothman EW, Steward O (1995) The role of extracellular ionic changes in upregulating the mRNA for glial fibrillary acidic protein following spreading depression. Brain Res 674:314–328

    Article  PubMed  CAS  Google Scholar 

  4. Bordey A, Hablitz JJ, Sontheimer H (2000) Reactive astrocytes show enhanced inwardly rectifying K+ currents in situ. Neuroreport 11:3151–3155

    Article  PubMed  CAS  Google Scholar 

  5. Bordey A, Lyons SA, Hablitz JJ, Sontheimer H (2001) Electrophysiological characteristics of reactive astrocytes in experimental cortical dysplasia. J Neurophysiol 85:1719–1731

    PubMed  CAS  Google Scholar 

  6. Bordey A, Sontheimer H (2000) Ion channel expression by astrocytes in situ: comparison of different CNS regions. Glia 30:27–38

    Article  PubMed  CAS  Google Scholar 

  7. Chvatal A, Anderova M, Sykova E (2004) Analysis of K+ accumulation reveals privileged extracellular region in the vicinity of glial cells in situ. J Neurosci Res 78:668–682

    Article  PubMed  CAS  Google Scholar 

  8. Chvatal A, Anderova M, Ziak D, Sykova E (1999) Glial depolarization evokes a larger potassium accumulation around oligodendrocytes than around astrocytes in gray matter of rat spinal cord slices. J Neurosci Res 56:493–505

    Article  PubMed  CAS  Google Scholar 

  9. Chvatal A, Pastor A, Mauch M, Sykova E, Kettenmann H (1995) Distinct populations of identified glial cells in the developing rat spinal cord slice: ion channel properties and cell morphology. Eur J Neurosci 7:129–142

    Article  PubMed  CAS  Google Scholar 

  10. D’Ambrosio R, Maris DO, Grady MS, Winn HR, Janigro D (1999) Impaired K(+) homeostasis and altered electrophysiological properties of post-traumatic hippocampal glia. J Neurosci 19:8152–8162

    PubMed  CAS  Google Scholar 

  11. Del Bigio MR, Omara F, Fedoroff S (1994) Astrocyte proliferation in culture following exposure to potassium ion. Neuroreport 5:639–641

    Article  PubMed  Google Scholar 

  12. Ferroni S, Nobile M, Caprini M, Rapisarda C (2000) pH modulation of an inward rectifier chloride current in cultured rat cortical astrocytes. Neuroscience 100:431–438

    Article  PubMed  CAS  Google Scholar 

  13. Hamill OP, Marty A, Neher E, Sakmann B, Sigworth FJ (1981) Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch 391:85–100

    Article  PubMed  CAS  Google Scholar 

  14. Hinterkeuser S, Schroder W, Hager G, Seifert G, Blumcke I, Elger CE, Schramm J, Steinhauser C (2000) Astrocytes in the hippocampus of patients with temporal lobe epilepsy display changes in potassium conductances. Eur J Neurosci 12:2087–2096

    Article  PubMed  CAS  Google Scholar 

  15. Inagaki M, Nakamura Y, Takeda M, Nishimura T, Inagaki N (1994) Glial fibrillary acidic protein: dynamic property and regulation by phosphorylation. Brain Pathol 4:239–243

    PubMed  CAS  Google Scholar 

  16. Jabs R, Paterson IA, Walz W (1997) Qualitative analysis of membrane currents in glial cells from normal and gliotic tissue in situ: down-regulation of Na+ current and lack of P2 purinergic responses. Neuroscience 81:847–860

    Article  PubMed  CAS  Google Scholar 

  17. Kimelberg HK, Rutledge E, Goderie S, Charniga C (1995) Astrocytic swelling due to hypotonic or high K+ medium causes inhibition of glutamate and aspartate uptake and increases their release. J Cereb Blood Flow Metab 15:409–416

    PubMed  CAS  Google Scholar 

  18. Kofuji P, Newman EA (2004) Potassium buffering in the central nervous system. Neuroscience 129:1045–1056

    Article  PubMed  CAS  Google Scholar 

  19. Koller H, Schroeter M, Jander S, Stoll G, Siebler M (2000) Time course of inwardly rectifying K(+) current reduction in glial cells surrounding ischemic brain lesions. Brain Res 872:194–198

    Article  PubMed  CAS  Google Scholar 

  20. Kressin K, Kuprijanova E, Jabs R, Seifert G, Steinhauser C (1995) Developmental regulation of Na+ and K+ conductances in glial cells of mouse hippocampal brain slices. Glia 15:173–187

    Article  PubMed  CAS  Google Scholar 

  21. Lascola CD, Kraig RP (1996) Whole-cell chloride currents in rat astrocytes accompany changes in cell morphology. J Neurosci 16:2532–2545

    PubMed  CAS  Google Scholar 

  22. Lee YB, Du S, Rhim H, Lee EB, Markelonis GJ, Oh TH (2000) Rapid increase in immunoreactivity to GFAP in astrocytes in vitro induced by acidic pH is mediated by calcium influx and calpain I. Brain Res 864:220–229

    Article  PubMed  CAS  Google Scholar 

  23. MacFarlane SN, Sontheimer H (1997) Electrophysiological changes that accompany reactive gliosis in vitro. J Neurosci 17:7316–7329

    PubMed  CAS  Google Scholar 

  24. Macfarlane SN, Sontheimer H (1998) Spinal cord astrocytes display a switch from TTX-sensitive to TTX-resistant sodium currents after injury-induced gliosis in vitro. J Neurophysiol 79:2222–2226

    PubMed  CAS  Google Scholar 

  25. Matthias K, Kirchhoff F, Seifert G, Huttmann K, Matyash M, Kettenmann H, Steinhauser C (2003) Segregated expression of AMPA-type glutamate receptors and glutamate transporters defines distinct astrocyte populations in the mouse hippocampus. J Neurosci 23:1750–1758

    PubMed  CAS  Google Scholar 

  26. Nolte C, Matyash M, Pivneva T, Schipke CG, Ohlemeyer C, Hanisch UK, Kirchhoff F, Kettenmann H (2001) GFAP promoter-controlled EGFP-expressing transgenic mice: a tool to visualize astrocytes and astrogliosis in living brain tissue. Glia 33:72–86

    Article  PubMed  CAS  Google Scholar 

  27. Norton WT (1999) Cell reactions following acute brain injury: a review. Neurochem Res 24:213–218

    Article  PubMed  CAS  Google Scholar 

  28. Orkand RK, Nicholls JG, Kuffler SW (1966) Effect of nerve impulses on the membrane potential of glial cells in the central nervous system of amphibia. J Neurophysiol 29:788–806

    PubMed  CAS  Google Scholar 

  29. Pannicke T, Faude F, Reichenbach A, Reichelt W (2000) A function of delayed rectifier potassium channels in glial cells: maintenance of an auxiliary membrane potential under pathological conditions. Brain Res 862:187–193

    Article  PubMed  CAS  Google Scholar 

  30. Pasantes-Morales H, Schousboe A (1989) Release of taurine from astrocytes during potassium-evoked swelling. Glia 2:45–50

    Article  PubMed  CAS  Google Scholar 

  31. Pastor A, Chvatal A, Sykova E, Kettenmann H (1995) Glycine- and GABA-activated currents in identified glial cells of the developing rat spinal cord slice. Eur J Neurosci 7:1188–1198

    Article  PubMed  CAS  Google Scholar 

  32. Pekny M, Nilsson M (2005) Astrocyte activation and reactive gliosis. Glia 50:427–434

    Article  PubMed  Google Scholar 

  33. Perillan PR, Li X, Simard JM (1999) K(+) inward rectifier currents in reactive astrocytes from adult rat brain. Glia 27:213–225

    Article  PubMed  CAS  Google Scholar 

  34. Roy ML, Sontheimer H (1995) Beta-adrenergic modulation of glial inwardly rectifying potassium channels. J Neurochem 64:1576–1584

    Article  PubMed  CAS  Google Scholar 

  35. Schroder W, Hager G, Kouprijanova E, Weber M, Schmitt AB, Seifert G, Steinhauser C (1999) Lesion-induced changes of electrophysiological properties in astrocytes of the rat dentate gyrus. Glia 28:166–174

    Article  PubMed  CAS  Google Scholar 

  36. Somjen GG (1979) Extracellular potassium in the mammalian central nervous system. Annu Rev Physiol 41:159–177

    Article  PubMed  CAS  Google Scholar 

  37. Somjen GG (2001) Mechanisms of spreading depression and hypoxic spreading depression-like depolarization. Physiol Rev 81:1065–1096

    PubMed  CAS  Google Scholar 

  38. Sontheimer H (1994) Voltage-dependent ion channels in glial cells. Glia 11:156–172

    Article  PubMed  CAS  Google Scholar 

  39. Sykova E (1983) Extracellular K+ accumulation in the central nervous system. Prog Biophys Mol Biol 42:135–189

    Article  PubMed  CAS  Google Scholar 

  40. Sykova E (1992) Ionic and volume changes in the microenvironment of nerve and receptor cells. Prog Sens Physiol 13:1–167

    Google Scholar 

  41. Sykova E (2005) Glia and volume transmission during physiological and pathological states. J Neural Transm 112:137–147

    Article  PubMed  CAS  Google Scholar 

  42. Sykova E, Jendelova P, Simonova Z, Chvatal A (1992) K+ and pH homeostasis in the developing rat spinal cord is impaired by early postnatal X-irradiation. Brain Res 594:19–30

    Article  PubMed  CAS  Google Scholar 

  43. Sykova E, Vargova L, Prokopova S, Simonova Z (1999) Glial swelling and astrogliosis produce diffusion barriers in the rat spinal cord. Glia 25:56–70

    Article  PubMed  CAS  Google Scholar 

  44. Vargova L, Chvatal A, Anderova M, Kubinova S, Ziak D, Sykova E (2001) Effect of osmotic stress on potassium accumulation around glial cells and extracellular space volume in rat spinal cord slices. J Neurosci Res 65:129–138

    Article  PubMed  CAS  Google Scholar 

  45. Verkhratsky A, Steinhauser C (2000) Ion channels in glial cells. Brain Res Brain Res Rev 32:380–412

    Article  PubMed  CAS  Google Scholar 

  46. Vorisek I, Sykova E (1997) Ischemia-induced changes in the extracellular space diffusion parameters, K+, and pH in the developing rat cortex and corpus callosum. J Cereb Blood Flow Metab 17:191–203

    Article  PubMed  CAS  Google Scholar 

  47. Walz W (1997) Role of astrocytes in the spreading depression signal between ischemic core and penumbra. Neurosci Biobehav Rev 21:135–142

    Article  PubMed  CAS  Google Scholar 

  48. Yu SP (2003) Regulation and critical role of potassium homeostasis in apoptosis. Prog Neurobiol 70:363–386

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants 305/03/1172 and 305/06/1316 from the Grant Agency of the Czech Republic; AVOZ50390512, 1M0021620803, and LC554 from the Ministry of Education, Youth and Sports of the Czech Republic; and 57/2005/C/2.LF from the Grant Agency of Charles University, Prague. The authors would like to thank Dr. Ladislav Andera for help with GFAP quantification, Mgr. Petr Pivonka for developing a program for patch-clamp data analysis, and Hana Hronova for immunohistochemical staining.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miroslava Anderova.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Neprasova, H., Anderova, M., Petrik, D. et al. High extracellular K+ evokes changes in voltage-dependent K+ and Na+ currents and volume regulation in astrocytes. Pflugers Arch - Eur J Physiol 453, 839–849 (2007). https://doi.org/10.1007/s00424-006-0151-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-006-0151-9

Keywords

Navigation