Skip to main content

Advertisement

Log in

Ca2+ currents and voltage responses in Type I and Type II hair cells of the chick embryo semicircular canal

  • Sensory Systems
  • Published:
Pflügers Archiv Aims and scope Submit manuscript

Abstract

Type I and Type II hair cells, and Type II hair cells located in different zones of the semicircular canal crista, express different patterns of voltage-dependent K channels, each one specifically shaping the hair cell receptor potential. We report here that, close to hatching, chicken embryo semicircular canal Type I and Type II hair cells express a similar voltage-dependent L-type calcium current (ICa), whose main features are: activation above −60 mV, fast activation kinetics, and scarce inactivation. ICa should be already active at rest in Zone 1 Type II hair cells, whose resting membrane potential was on average slightly less negative than −60 mV. Conversely, ICa would not be active at rest in Type II hair cells from Zone 2 and 3, nor in Type I hair cells, since their resting membrane potential was significantly more negative than −60 mV. However, even small depolarising currents would activate ICa steadily in Zone 2 and 3 Type II hair cells, but not in Type I hair cells because of the robust repolarising action of their specific array of K+ currents. The implications of the present findings in the afferent discharge are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Allen TJ (1996) Temperature dependence of macroscopic L-type calcium channel currents in single guinea pig ventricular myocytes. J Cardiovasc Electrophysiol 7(4):307–321

    PubMed  Google Scholar 

  2. Almanza A, Vega R, Soto E (2003) Calcium current in Type I hair cells isolated from the semicircular canal crista ampullaris of the rat. Brain Res 994(2):175–180

    Article  PubMed  Google Scholar 

  3. Assad JA, Hacohen N, Corey DP (1989) Voltage dependence of adaptation and active bundle movement in bullfrog saccular hair cells. Proc Natl Acad Sci USA 86(8):2918–2922

    PubMed  Google Scholar 

  4. Bao H, Wong WH, Goldberg JM, Eatock RA (2003) Voltage-gated calcium channel currents in Type I and Type II hair cells isolated from the rat crista. J Neurophysiol 90(1):155–164

    PubMed  Google Scholar 

  5. Behrend O, Schwark C, Kunihiro T, Strupp M. (1997) Cyclic GMP inhibits and shifts the activation curve of the delayed-rectifier (I[K1]) of Type I mammalian vestibular hair cells. Neuroreport 8(12):2687–2690

    Article  PubMed  Google Scholar 

  6. Beutner D, Moser T (2001) The presynaptic function of mouse cochlear inner hair cells during development of hearing. J Neurosci 21(13):4593–4599

    PubMed  Google Scholar 

  7. Brichta AM, Aubert A, Eatock RA, Goldberg JM (2002) Regional analysis of whole cell currents from hair cells of the turtle posterior crista. J Neurophysiol 88(6):3259–3278

    PubMed  Google Scholar 

  8. Carbone E, Swandulla D (1989) Neuronal calcium channels: kinetics, blockade and modulation. Prog Biophys Mol Biol 54(1):31–58

    Article  PubMed  Google Scholar 

  9. Chabbert C, Mechaly I, Sieso V, Giraud P, Brugeaud A, Lehouelleur J, Couraud F, Valmier J, Sans A (2003) Voltage-gated Na+ channel activation induces both action potentials in utricular hair cells and brain-derived neurotrophic factor release in the rat utricle during a restricted period of development. J Physiol 553(Pt 1):113–123

    Article  PubMed  Google Scholar 

  10. Chen JW, Eatock RA (2000) Major potassium conductance in Type I hair cells from rat semicircular canals: characterization and modulation by nitric oxide. J Neurophysiol 84(1):139–151

    PubMed  Google Scholar 

  11. Correia MJ, Ricci AJ, Rennie KJ (1996) Filtering properties of vestibular hair cells: an update. Ann N Y Acad Sci 781:138–149

    PubMed  Google Scholar 

  12. Dickman JD, Correia MJ (1989) Responses of pigeon horizontal semicircular canal afferent fibers. II. High-frequency mechanical stimulation. J Neurophysiol 62(5):1102–1112

    PubMed  Google Scholar 

  13. Dou H, Vazquez AE, Namkung Y, Chu H, Cardell EL, Nie L, Parson S, Shin HS, Yamoah EN (2004) Null mutation of alpha1D Ca2+ channel gene results in deafness but no vestibular defect in mice. J Assoc Res Otolaryngol 5(2):215–226

    PubMed  Google Scholar 

  14. Elmslie KS, Kammermeier PJ, Jones SW (1994) Reevaluation of Ca2+ channel types and their modulation in bullfrog sympathetic neurons. Neuron 13(1):217–228

    Article  PubMed  Google Scholar 

  15. Fettiplace R, Crawford AC, Evans MG (1992) The hair cell’s mechanoelectrical transducer channel. Ann N Y Acad Sci 656:1–11

    Google Scholar 

  16. Geleoc GS, Risner JR, Holt JR. (2004) Developmental acquisition of voltage-dependent conductances and sensory signaling in hair cells of the embryonic mouse inner ear. J Neurosci 24(49):11148–11159

    Article  PubMed  Google Scholar 

  17. Goldberg JM (1996) Theoretical analysis of intercellular communication between the vestibular Type I hair cell and its calyx ending. J Neurophysiol 76(3):1942–1957

    PubMed  Google Scholar 

  18. Goldberg JM (2000) Afferent diversity and the organization of central vestibular pathways. Exp Brain Res 130(3):277–297

    Article  PubMed  Google Scholar 

  19. Goldberg JM, Brichta AM (2002) Functional analysis of whole cell currents from hair cells of the turtle posterior crista. J Neurophysiol 88(6):3279–3292

    PubMed  Google Scholar 

  20. Griguer C, Sans A, Lehouelleur J (1993) Non-typical K(+)-current in cesium-loaded guinea pig Type I vestibular hair cell. Pfluegers Arch 422(4):407–409

    Article  Google Scholar 

  21. Herve JC, Yamaoka K, Twist VW, Powell T, Ellory JC, Wang LC (1992) Temperature dependence of electrophysiological properties of guinea pig and ground squirrel myocytes. Am J Physiol 263(1 Pt 2):R177–R184

    PubMed  Google Scholar 

  22. Hille B (2001) Ion channels of excitable membrane, 3rd edn. Sinauer Associates Inc., Sunderland

    Google Scholar 

  23. Holt JR, Corey DP, Eatock RA (1997) Mechanoelectrical transduction and adaptation in hair cells of the mouse utricle, a low-frequency vestibular organ. J Neurosci 17(22):8739–8748

    PubMed  Google Scholar 

  24. Horn R, Marty A (1988) Muscarinic activation of ionic currents measured by a new whole-cell recording method. J Gen Physiol 92:145–159

    Article  PubMed  Google Scholar 

  25. Huguenard JR, Prince DA (1992) A novel T-type current underlies prolonged Ca(2+)-dependent burst firing in GABAergic neurons of rat thalamic reticular nucleus. J Neurosci 12(10):3804–3817

    PubMed  Google Scholar 

  26. Hurley KM, Eatock RA (1999) Characterization and modulation of a delayed rectifier in vestibular Type I hair cells. ARO Annu Meet Assoc Res Otolaryngol Abstr N. 764

  27. Jones SW (1998) Overview of voltage-dependent Ca channels. J Bioenerg Biomembr 30(4):299–312

    Article  PubMed  Google Scholar 

  28. Kenyon JL, Goff HR (1998) Temperature dependencies of Ca2+ current, Ca(2+) -activated Cl current and Ca2+ transients in sensory neurones. Cell Calcium 24(1):35–48

    Article  PubMed  Google Scholar 

  29. Kollmar R, Montgomery LG, Fak J, Henry LJ, Hudspeth AJ (1997) Predominance of the alpha1D subunit in L-type voltage-gated Ca2+ channels of hair cells in the chicken’s cochlea. Proc Natl Acad Sci USA 94(26):14883–14888

    Article  PubMed  Google Scholar 

  30. Kros CJ, Ruppersberg JP, Rusch A (1998) Expression of a potassium current in inner hair cells during development of hearing in mice. Nature 394(6690):281–284

    Article  PubMed  Google Scholar 

  31. Lang DG, Correia MJ (1989) Studies of solitary semicircular canal hair cells in the adult pigeon. II. Voltage-dependent ionic conductances. J Neurophysiol 62(4):935–945

    PubMed  Google Scholar 

  32. Lennan GW, Steinacker A, Lehouelleur J, Sans A (1999) Ionic currents and current-clamp depolarisations of Type I and Type II hair cells from the developing rat utricle. Pfluegers Arch 438(1):40–46

    Article  Google Scholar 

  33. Lorenzon NM, Foehring RC (1995) Characterization of pharmacologically identified voltage-gated calcium channel currents in acutely isolated rat neocortical neurons. I. Adult neurons. J Neurophysiol 73(4):1430–1442

    PubMed  Google Scholar 

  34. Manley GA, Kaiser A, Brix J, Gleich O (1991) Activity patterns of primary auditory-nerve fibres in chickens: development of fundamental properties. Hear Res 57(1):1–15

    Article  PubMed  Google Scholar 

  35. Marcotti W, Russo G, Prigioni I (1999) Position-dependent expression of inwardly rectifying K+ currents by hair cells of frog semicircular canals. Neuroreport 10(3):601–606

    PubMed  Google Scholar 

  36. Masetto S, Russo G, Prigioni I (1994) Differential expression of potassium currents by hair cells in thin slices of frog crista ampullaris. J Neurophysiol 72:443–455

    PubMed  Google Scholar 

  37. Masetto S, Correia MJ (1997) Electrophysiological properties of vestibular sensory and supporting cells in the labyrinth slice before and during regeneration. J Neurophysiol 78(4):1913–1927

    PubMed  Google Scholar 

  38. Masetto S, Weng T, Valli P, Correia MJ (1999) Artifactual voltage response recorded from hair cells with patch-clamp amplifiers. Neuroreport 10(9):1837–1841

    PubMed  Google Scholar 

  39. Masetto S, Perin P, Malusa A, Zucca G, Valli P (2000) Membrane properties of chick semicircular canal hair cells in situ during embryonic development. J Neurophysiol 83(5):2740–2756

    PubMed  Google Scholar 

  40. Masetto S, Bosica M, Correia MJ, Ottersen OP, Zucca G, Perin P, Valli P (2003) Na+ currents in vestibular Type I and Type II hair cells of the embryo and adult chicken. J Neurophysiol 90(2):1266–1278

    PubMed  Google Scholar 

  41. Meza G, Hinojosa R (1987) Ontogenetic approach to cellular localization of neurotransmitters in the chick vestibule. Hear Res 28(1):73–85

    Article  PubMed  Google Scholar 

  42. Narahashi T, Tsunoo A, Yoshii M (1987) Characterization of two types of calcium channels in mouse neuroblastoma cells. J Physiol 383:231–249

    PubMed  Google Scholar 

  43. Nobile M, Carbone E, Lux HD, Zucker H (1990) Temperature sensitivity of Ca currents in chick sensory neurones. Pflugers Arch 415(6):658–663

    PubMed  Google Scholar 

  44. Perin P, Masetto S, Martini M, Rossi ML, Rubbini G, Rispoli G, Guth P, Zucca G, Valli P (2001) Regional distribution of calcium currents in frog semicircular canal hair cells. Hear Res 152(1–2):67–76

    Article  PubMed  Google Scholar 

  45. Platzer J, Engel J, Schrott-Fischer A, Stephan K, Bova S, Chen H, Zheng H, Striessnig J (2000) Congenital deafness and sinoatrial node dysfunction in mice lacking class D L-type Ca2+ channels. Cell 102(1):89–97

    Article  PubMed  Google Scholar 

  46. Prigioni I, Masetto S, Russo G, Taglietti V (1992) Calcium currents in solitary hair cells isolated from frog crista ampullaris. J Vestib Res 2(1):31–39

    PubMed  Google Scholar 

  47. Prigioni I, Russo G, Marcotti W (1996) Potassium currents of pear-shaped hair cells in relation to their location in frog crista ampullaris. Neuroreport 7(11):1841–1845

    PubMed  Google Scholar 

  48. Rennie KJ, Correia MJ (1994) Potassium currents in mammalian and avian isolated Type I semicircular canal hair cells. J Neurophysiol 71:317–329

    PubMed  Google Scholar 

  49. Rennie KJ, Ricci AJ, Correia MJ (1996) Electrical filtering in gerbil isolated Type I semicircular canal hair cells. J Neurophysiol 75(5):2117–2123

    PubMed  Google Scholar 

  50. Rennie KJ, Correia MJ (2000) Effects of cationic substitutions on delayed rectifier current in Type I vestibular hair cells. J Membr Biol 173(2):139–148

    Article  PubMed  Google Scholar 

  51. Ricci AJ, Fettiplace R (1998) Calcium permeation of the turtle hair cell mechanotransducer channel and its relation to the composition of endolymph. J Physiol 506(1):159–173

    Article  PubMed  Google Scholar 

  52. Ricci AJ, Crawford AC, Fettiplace R (2003) Tonotopic variation in the conductance of the hair cell mechanotransducer channel. Neuron 40(5):983–990

    Article  PubMed  Google Scholar 

  53. Roberts WM, Jacobs RA, Hudspeth AJ (1991) The hair cell as a presynaptic terminal. Ann N Y Acad Sci 635:221–233

    PubMed  Google Scholar 

  54. Rodriguez-Contreras A, Yamoah EN (2001) Direct measurement of single-channel Ca(2+) currents in bullfrog hair cells reveals two distinct channel subtypes. J Physiol 534(Pt 3):669–689

    Article  PubMed  Google Scholar 

  55. Rüsch A, Eatock RA (1996) A delayed rectifier conductance in Type I hair cells of the mouse utricle. J Neurophysiol 76:994–1004

    Google Scholar 

  56. Rüsch A, Eatock RA (1996) Voltage responses of mouse utricular hair cells to injected currents. Ann N Y Acad Sci 781:71–84

    PubMed  Google Scholar 

  57. Russo G, Lelli A, Marcotti W, Prigioni I (2001) Gradients of expression of calcium and potassium currents in frog crista ampullaris. Pfluegers Arch 442(6):814–820

    Article  Google Scholar 

  58. Russo G, Lelli A, Gioglio L, Prigioni I (2003) Nature and expression of dihydropyridine-sensitive and -insensitive calcium currents in hair cells of frog semicircular canals. Pfluegers Arch 446(2):189–197

    Google Scholar 

  59. Soto E, Vega R, Budelli R (2002) The receptor potential in Type I and Type II vestibular system hair cells: a model analysis. Hear Res 165:35–47

    Article  PubMed  Google Scholar 

  60. Spassova M, Eisen MD, Saunders JC, Parsons TD (2001) Chick cochlear hair cell exocytosis mediated by dihydropyridine-sensitive calcium channels. J Physiol 535(3):689–696

    Article  PubMed  Google Scholar 

  61. Sugihara I, Furukawa T (1989) Morphological and functional aspects of two different types of hair cells in the goldfish sacculus. J Neurophysiol 62(6):1330–1343

    PubMed  Google Scholar 

  62. Todorovic SM, Lingle CJ (1998) Pharmacological properties of T-type Ca2+ current in adult rat sensory neurons: effects of anticonvulsant and anesthetic agents. J Neurophysiol 79(1):240–252

    PubMed  Google Scholar 

  63. Weng TX, Correia MJ (1999) Regional distribution of ionic currents and membrane voltage responses of Type II hair cells in the vestibular neuroepithelium. J Neurophysiol 82(5):2451–2461

    PubMed  Google Scholar 

  64. Wong WH, Hurley KM, Eatock RA (2004) Differences between the negatively activating potassium conductances of Mammalian cochlear and vestibular hair cells. J Assoc Res Otolaryngol 5(3):270–284

    Article  PubMed  Google Scholar 

  65. Xu W, Lipscombe D (2001) Neuronal Ca(V)1.3alpha(1) L-type channels activate at relatively hyperpolarized membrane potentials and are incompletely inhibited by dihydropyridines. J Neurosci 21(16):5944–5951

    PubMed  Google Scholar 

  66. Zhang JF, Randall AD, Ellinor PT, Horne WA, Sather WA, Tanabe T, Schwarz TL, Tsien RW (1993) Distinctive pharmacology and kinetics of cloned neuronal Ca2+ channels and their possible counterparts in mammalian CNS neurons. Neuropharmacology 32(11):1075–1088

    Article  PubMed  Google Scholar 

  67. Zidanic M, Fuchs PA (1995) Kinetic analysis of barium currents in chick cochlear hair cells. Biophys J 68(4):1323–1336

    PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr. M. J. Correia and Dr. P. S. Guth, for valuable comments on the manuscript. This work was supported by the Ministero della Ricerca Scientifica e Tecnologica (MURST), Rome, Italy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergio Masetto.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Masetto, S., Zampini, V., Zucca, G. et al. Ca2+ currents and voltage responses in Type I and Type II hair cells of the chick embryo semicircular canal. Pflugers Arch - Eur J Physiol 451, 395–408 (2005). https://doi.org/10.1007/s00424-005-1466-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-005-1466-7

Keywords

Navigation