Skip to main content
Log in

P2Y2 and P2Y4 receptors regulate pancreatic Ca2+-activated K+ channels differently

Pflügers Archiv Aims and scope Submit manuscript

Abstract

Extracellular ATP is an important regulator of transepithelial transport in a number of tissues. In pancreatic ducts, we have shown that ATP modulates epithelial K+ channels via purinergic receptors, most likely the P2Y2 and P2Y4 receptors, but the identity of the involved K+ channels was not clear. In this study, we show by RT-PCR analysis that rat pancreatic ducts express Ca2+-activated K+ channels of intermediate conductance (IK) and big conductance (BK), but not small conductance (SK). Possible interactions between P2Y receptors and these Ca2+-activated K+ channels were examined in co-expression experiments in Xenopus laevis oocytes. K+ channel activity was measured electrophysiologically in oocytes stimulated with UTP (0.1 mM). UTP stimulation of oocytes expressing P2Y4 receptors and BK channels resulted in a 30% increase in the current through the expressed channels. In contrast, stimulation of P2Y2 receptors led to a 20% inhibition of co-expressed BK channel activity, a response that was sensitive to TEA. Furthermore, co-expression of IK channels with P2Y4 and P2Y2 receptors resulted in a large hyperpolarization and 22-fold and 5-fold activation of currents by UTP, respectively. Taken together, this study shows that there are different interactions between the subtypes of P2Y purinergic receptors and different Ca2+-activated K+ channels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (France)

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1a,b
Fig. 2
Fig. 3a–f
Fig. 4a,b
Fig. 5a-d
Fig. 6a-d
Fig. 7

References

  1. Ashton N, Argent BE, Green R (1991) Characteristics of fluid secretion from isolated rat pancreatic ducts stimulated with secretin and bombesin. J Physiol (Lond) 435:533–546

    CAS  Google Scholar 

  2. Buchholz B, Tauber R, Steffl D, Walz G, Köttgen M (2004) An inwardly rectifying whole cell current induced by Gq-coupled receptors. Biochem Biophys Res Commun 322:177–185

    Article  CAS  PubMed  Google Scholar 

  3. Chan HC, Cheung WT, Leung PY, Wu LJ, Chew SB, Ko WH, Wong PY (1996) Purinergic regulation of anion secretion by cystic fibrosis pancreatic duct cells. Am J Physiol 271:C469–C477

    CAS  PubMed  Google Scholar 

  4. Christoffersen BC, Hug MJ, Novak I (1998) Different purinergic receptors lead to intracellular calcium increases in pancreatic ducts. Pflugers Arch 436:33–39

    Article  CAS  PubMed  Google Scholar 

  5. Coetzee WA, Amarillo Y, Chiu J, Chow A, Lau D, McCormack T, Moreno H, Nadal MS, Ozaita A, Pountney D, Saganich M, Vega-Saenz dM, Rudy B (1999) Molecular diversity of K+ channels. Ann NY Acad Sci 868:233–285

    CAS  PubMed  Google Scholar 

  6. Cook DI, Young JA (1989) Effect of K+ channels in the apical plasma membrane on epithelial secretion based on secondary active Cl transport. J Membr Biol 110:139–146

    CAS  PubMed  Google Scholar 

  7. Filippov AK, Fernandez-Fernandez JM, Marsh SJ, Simon J, Barnard EA, Brown DA (2004) Activation and inhibition of neuronal G protein-gated inwardly rectifying K+ channels by P2Y nucleotide receptors. Mol Pharmacol 66:468–477

    CAS  PubMed  Google Scholar 

  8. Filippov AK, Webb TE, Barnard EA, Brown DA (1998) P2Y2 nucleotide receptors expressed heterologously in sympathetic neurons inhibit both N-type Ca2+ and M-type K+ currents. J Neurosci 18:5170–5179

    CAS  PubMed  Google Scholar 

  9. Fong P, Argent BE, Guggino WB, Gray MA (2003) Characterization of vectorial chloride transport pathways in the human pancreatic duct adenocarcinoma cell line, HPAF. Am J Physiol 285:C433–C445

    CAS  Google Scholar 

  10. Galietta LJ, Zegarra-Moran O, Mastrocola T, Wohrle C, Rugolo M, Romeo G (1994) Activation of Ca2+-dependent K+ and Cl currents by UTP and ATP in CFPAC-1 cells. Pflugers Arch 426:534–541

    Article  CAS  PubMed  Google Scholar 

  11. Gallacher DV (1982) Are there purinergic receptors on parotid acinar cells? Nature 296:83–86

    Article  CAS  PubMed  Google Scholar 

  12. Gray MA, Greenwell JR, Garton AJ, Argent BE (1990) Regulation of maxi-K+ channels on pancreatic duct cells by cyclic AMP-dependent phosphorylation. J Membr Biol 115:203–215

    CAS  PubMed  Google Scholar 

  13. Grunnet M, MacAulay N, Jorgensen NK, Jensen S, Olesen SP, Klaerke DA (2002) Regulation of cloned, Ca2+-activated K+ channels by cell volume changes. Pflugers Arch 444:167–177

    Article  CAS  PubMed  Google Scholar 

  14. Hede SE, Amstrup J, Christoffersen BC, Novak I (1999) Purinoceptors evoke different electrophysiological responses in pancreatic ducts. P2Y inhibits K+ conductance, and P2X stimulates cation conductance. J Biol Chem 274:31784–31791

    Article  CAS  PubMed  Google Scholar 

  15. Hug M, Pahl C, Novak I (1994) Effect of ATP, carbachol and other agonists on intracellular calcium activity and membrane voltage of pancreatic ducts. Pflugers Arch 426:412–418

    Article  CAS  PubMed  Google Scholar 

  16. Ishiguro H, Naruse S, Kitagawa M, Hayakawa T, Case RM, Steward MC (1999) Luminal ATP stimulates fluid and HCO3 secretion in guinea-pig pancreatic duct. J Physiol (Lond) 519:551–558

    Article  CAS  Google Scholar 

  17. Ishiguro H, Steward MC, Wilson RW, Case RM (1996) Bicarbonate secretion in interlobular ducts from guinea-pig pancreas. J Physiol (Lond) 495:179–191

    CAS  Google Scholar 

  18. Jespersen T, Grunnet M, Angelo K, Klaerke DA, Olesen SP (2002) Dual-function vector for protein expression in both mammalian cells and Xenopus laevis oocytes. Biotechniques 32:536–540

    CAS  PubMed  Google Scholar 

  19. Joseph SM, Buchakjian MR, Dubyak GR (2003) Colocalization of ATP release sites and ecto-ATPase activity at the extracellular surface of human astrocytes. J Biol Chem 278:23331–23342

    Article  CAS  PubMed  Google Scholar 

  20. Kerstan D, Gordjani N, Nitschke R, Greger R, Leipziger J (1998) Luminal ATP induces K+ secretion via a P2Y2 receptor in rat distal colonic mucosa. Pflugers Arch 436:712–716

    Article  CAS  PubMed  Google Scholar 

  21. Kunzelmann K, Mall M (2003) Pharmacotherapy of the ion transport defect in cystic fibrosis: role of purinergic receptor agonists and other potential therapeutics. Am J Respir Med 2:299–309

    CAS  PubMed  Google Scholar 

  22. Kunzelmann K, Schreiber R, Boucherot A (2001) Mechanisms of the inhibition of epithelial Na+ channels by CFTR and purinergic stimulation. Kidney Int 60:455–461

    Article  CAS  PubMed  Google Scholar 

  23. Lazarowski ER, Boucher RC, Harden TK (2003) Mechanisms of release of nucleotides and integration of their action as P2X- and P2Y-receptor activating molecules. Mol Pharmacol 64:785–795

    Article  CAS  PubMed  Google Scholar 

  24. Lu M, MacGregor GG, Wang W, Giebisch G (2000) Extracellular ATP inhibits the small-conductance K channel on the apical membrane of the cortical collecting duct from mouse kidney. J Gen Physiol 116:299–310

    CAS  PubMed  Google Scholar 

  25. Marcus DC, Sunose H, Liu J, Bennett T, Shen Z, Scofield MA, Ryan AF (1998) Protein kinase C mediates P2U purinergic receptor inhibition of K+ channel in apical membrane of strial marginal cells. Hear Res 115:82–92

    CAS  PubMed  Google Scholar 

  26. Marcus DC, Sunose H, Liu J, Shen Z, Scofield MA (1997) P2U purinergic receptor inhibits apical IsK/KvLQT1 channel via protein kinase C in vestibular dark cells. Am J Physiol 273:C2022–C2029

    CAS  PubMed  Google Scholar 

  27. Mark MD, Ruppersberg JP, Herlitze S (2000) Regulation of GIRK channel deactivation by Gα(q) and Gα(i/o) pathways. Neuropharmacology 39:2360–2373

    CAS  PubMed  Google Scholar 

  28. McNicholas CM, Yang Y, Giebisch G, Herbert SC (1996) Molecular site for nucleotide binding on an ATP-sensitive renal K + channel (ROMK2). Am J Physiol 271:F275–F285

    CAS  PubMed  Google Scholar 

  29. Nehrke K, Quinn CC, Begenisich T (2003) Molecular identification of Ca2+-activated K+ channels in parotid acinar cells. Am J Physiol 284:C535–C546

    CAS  Google Scholar 

  30. Novak I (2003) ATP as a signaling molecule—the exocrine focus. News Physiol Sci 18:12–17

    CAS  PubMed  Google Scholar 

  31. Novak I, Amstrup J, Henriksen KL, Hede SE, Sørensen CE (2003) ATP release and effects in pancreas. Drug Dev Res 59:128–135

    CAS  Google Scholar 

  32. Novak I, Greger R (1988) Electrophysiological study of transport systems in isolated perfused pancreatic ducts: properties of the basolateral membrane. Pflugers Arch 411:58–68

    CAS  PubMed  Google Scholar 

  33. Novak I, Greger R (1991) Effect of bicarbonate on potassium conductance of isolated perfused rat pancreatic ducts. Pflugers Arch 419:76–83

    CAS  PubMed  Google Scholar 

  34. Novak I, Pedersen PS, Larsen EH (1992) Chloride and potassium conductances of cultured human sweat ducts. Pflugers Arch 422:151–158

    CAS  PubMed  Google Scholar 

  35. Paradiso AM, Ribeiro CM, Boucher RC (2001) Polarized signaling via purinoceptors in normal and cystic fibrosis airway epithelia. J Gen Physiol 117:53–67

    CAS  PubMed  Google Scholar 

  36. Ralevic V, Burnstock G (1998) Receptors for purines and pyrimidines. Pharmacol Rev 50:413–492

    CAS  PubMed  Google Scholar 

  37. Sasaki T, Gallacher DV (1990) Extracellular ATP activates receptor-operated cation channels in mouse lacrimal acinar cells to promote calcium influx in the absence of phophoinositide metabolism. FEBS Lett 264:130–134

    CAS  PubMed  Google Scholar 

  38. Schwiebert EM, Zsembery A (2002) Extracellular ATP as a signaling molecule for epithelial cells. Biochim Biophys Acta 1615:7–32

    Google Scholar 

  39. Sorensen JB, Nielsen MS, Gudme CN, Larsen EH, Nielsen R (2001) Maxi K+ channels co-localised with CFTR in the apical membrane of an exocrine gland acinus: possible involvement in secretion. Pflugers Arch 442:1–11

    CAS  PubMed  Google Scholar 

  40. Tabcharani JA, Misler S (1989) Ca2+-activated K+ channel in rat pancreatic islet B cells: permeation, gating and blockade by cations. Biochim Biophys Acta 982:62–72

    CAS  PubMed  Google Scholar 

  41. Takahata T, Hayashi M, Ishikawa T (2003) SK4/IK1-like channels mediate TEA-insensitive, Ca2+-activated K+ currents in bovine parotid acinar cells. Am J Physiol 284:C127–C144

    CAS  Google Scholar 

  42. Tamarina NA, Wang Y, Mariotto L, Kuznetsov A, Bond C, Adelman J, Philipson LH (2003) Small-conductance calcium-activated K+ channels are expressed in pancreatic islets and regulate glucose responses. Diabetes 52:2000–2006

    CAS  PubMed  Google Scholar 

  43. Warth R (2003) Potassium channels in epithelial transport. Pflugers Arch 446:505–513

    CAS  PubMed  Google Scholar 

  44. Warth R, Hamm K, Bleich M, Kunzelmann K, von Hahn T, Schreiber R, Ullrich E, Mengel M, Trautmann N, Kindle P, Schwab A, Greger R (1999) Molecular and functional characterization of the small Ca2+-regulated K+ channel (rSK4) of colonic crypts. Pflugers Arch 438:437–444

    CAS  PubMed  Google Scholar 

  45. Wu WL, So SC, Sun YP, Chung YW, Grima J, Wong PY, Yan YC, Chan HC (1998) Functional expression of P2U receptors in rat spermatogenic cells: dual modulation of a Ca2+-activated K+ channel. Biochem Biophys Res Commun 248:728–732

    CAS  PubMed  Google Scholar 

  46. Zsembery A, Strazzabosco M, Graf J (2000) Ca2+-activated Cl channels can substitute for CFTR in stimulation of pancreatic duct bicarbonate secretion. FASEB J 14:2345–2356

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are most grateful to T.K. Harden (University of North Carolina) for providing us with cDNA for human P2Y2 and P2Y4 receptors and E.H. Larsen for a loan of oocyte clamp equipment. S.E. Hede was supported by The Lundbeck Foundation and Augustinus Fonden. The project was supported by the Danish Research Councils (grants 22-011-0318 and 21-03-0558). We are grateful to Alice Q.C. Scheuer for expert handling of the animals. Technical assistance of Anni V. Olsen, Birthe Petersen, Arne Nielsen, Tove Soland and Birthe Lynderup is also gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivana Novak.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hede, S.E., Amstrup, J., Klaerke, D.A. et al. P2Y2 and P2Y4 receptors regulate pancreatic Ca2+-activated K+ channels differently. Pflugers Arch - Eur J Physiol 450, 429–436 (2005). https://doi.org/10.1007/s00424-005-1433-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-005-1433-3

Keywords

Navigation