Pflügers Archiv

, Volume 451, Issue 1, pp 181–192 | Cite as

TRPV5 and TRPV6 in Ca2+ (re)absorption: regulating Ca2+ entry at the gate

  • Tom Nijenhuis
  • Joost G. J. Hoenderop
  • René J. M. Bindels
Invited Review

Abstract

Many physiological functions rely on the exact maintenance of body Ca2+ balance. Therefore, the extracellular Ca2+ concentration is tightly regulated by the concerted actions of intestinal Ca2+ absorption, exchange of Ca2+ to and from bone, and renal Ca2+ reabsorption. Renal distal convoluted and connecting tubular cells as well as duodenal epithelial cells are unique in their ability to mediate transcellular (re)absorption of Ca2+ at large and highly variable rates. Two members of the transient receptor potential (TRP) superfamily, TRP vanilloid (TRPV)5 and TRPV6, are specialized epithelial Ca2+ channels responsible for the critical Ca2+ entry step in transcellular Ca2+ (re)absorption in intestine and kidney, respectively. Because transcellular Ca2+ transport is fine-tuned to the body’s specific requirements, regulation of the transmembrane Ca2+ flux through TRPV5/6 is of particular importance and has, therefore, to be conspicuously controlled. We present an overview of the current knowledge and recent advances concerning the coordinated regulation of Ca2+ influx through the epithelial Ca2+ channels TRPV5 and TRPV6 in transcellular Ca2+ (re)absorption.

Keywords

Calcium transport TRPV5 TRPV6 Regulation 

References

  1. 1.
    Hoenderop JG, Nilius B, Bindels RJ (2005) Calcium absorption across epithelia. Physiol Rev 85:373–422CrossRefPubMedGoogle Scholar
  2. 2.
    Hoenderop JG, van der Kemp AW, Hartog A, van de Graaf SF, van Os CH, Willems PH, Bindels RJ (1999) Molecular identification of the apical Ca2+ channel in 1, 25-dihydroxyvitamin D3-responsive epithelia. J Biol Chem 274:8375–8378CrossRefPubMedGoogle Scholar
  3. 3.
    Peng JB, Chen XZ, Berger UV, Vassilev PM, Tsukaguchi H, Brown EM, Hediger MA (1999) Molecular cloning and characterization of a channel-like transporter mediating intestinal calcium absorption. J Biol Chem 274:22739–22746CrossRefPubMedGoogle Scholar
  4. 4.
    Hoenderop JGJ, Vennekens R, Müller D, Prenen J, Droogmans G, Bindels RJM, Nilius B (2001) Function and expression of the epithelial Ca2+ channel family: comparison of the epithelial Ca2+ channel 1 and 2. J Physiol (Lond) 537:747–761CrossRefGoogle Scholar
  5. 5.
    Peng JB, Brown EM, Hediger MA (2001) Structural conservation of the genes encoding CaT1, CaT2, and related cation channels. Genomics 76:99–109CrossRefPubMedGoogle Scholar
  6. 6.
    Hoenderop JG, van Leeuwen JP, van der Eerden BC, Kersten FF, van der Kemp AW, Merillat AM, Waarsing JH, Rossier BC, Vallon V, Hummler E, et al (2003) Renal Ca2+ wasting, hyperabsorption, and reduced bone thickness in mice lacking TRPV5. J Clin Invest 112:1906–1914CrossRefPubMedGoogle Scholar
  7. 7.
    Qiu A, Hogstrand C (2004) Functional characterisation and genomic analysis of an epithelial calcium channel (ECaC) from pufferfish, Fugu rubripes. Gene 342:113–123CrossRefPubMedGoogle Scholar
  8. 8.
    Hoenderop JG, Voets T, Hoefs S, Weidema F, Prenen J, Nilius B, Bindels RJ (2003) Homo- and heterotetrameric architecture of the epithelial Ca2+ channels TRPV5 and TRPV6. EMBO J 22:776–785CrossRefPubMedGoogle Scholar
  9. 9.
    Zhuang L, Peng JB, Tou L, Takanaga H, Adam RM, Hediger MA, Freeman MR (2002) Calcium-selective ion channel, CaT1, is apically localized in gastrointestinal tract epithelia and is aberrantly expressed in human malignancies. Lab Invest 82:1755–1764PubMedGoogle Scholar
  10. 10.
    Muller D, Hoenderop JG, Meij IC, van den Heuvel LP, Knoers NV, den Hollander AI, Eggert P, Garcia-Nieto V, Claverie-Martin F, Bindels RJ (2000) Molecular cloning, tissue distribution, and chromosomal mapping of the human epithelial Ca2+ channel (ECAC1). Genomics 67:48–53CrossRefPubMedGoogle Scholar
  11. 11.
    Peng JB, Brown EM, Hediger MA (2003) Apical entry channels in calcium-transporting epithelia. News Physiol Sci 18:158–163PubMedGoogle Scholar
  12. 12.
    Gunthorpe MJ, Benham CD, Randall A, Davis JB (2002) The diversity in the vanilloid (TRPV) receptor family of ion channels. Trends Pharmacol Sci 23:183–191CrossRefPubMedGoogle Scholar
  13. 13.
    Benham CD, Davis JB, Randall AD (2002) Vanilloid and TRP channels: a family of lipid-gated cation channels. Neuropharmacology 42:873–888CrossRefPubMedGoogle Scholar
  14. 14.
    Voets T, Prenen J, Vriens J, Watanabe H, Janssens A, Wissenbach U, Bödding M, Droogmans G, Nilius B (2002) Molecular determinants of permeation through the cation channel TRPV4. J Biol Chem 277:33704–33710CrossRefPubMedGoogle Scholar
  15. 15.
    Nilius B, Vriens J, Prenen J, Droogmans G, Voets T (2004) TRPV4 calcium entry channel: a paradigm for gating diversity. Am J Physiol 286:C195–C205CrossRefGoogle Scholar
  16. 16.
    Nilius B, Vennekens R, Prenen J, Hoenderop JG, Droogmans G, Bindels RJ (2001) The single pore residue Asp542 determines Ca2+ permeation and Mg2+ block of the epithelial Ca2+ channel. J Biol Chem 276:1020–1025CrossRefPubMedGoogle Scholar
  17. 17.
    Voets T, Janssens A, Prenen J, Droogmans D, Nilius G (2003) Mg2+-dependent gating and strong inward rectification of the cation channel TRPV6. J Gen Physiol 121:245–260CrossRefPubMedGoogle Scholar
  18. 18.
    Hoenderop JG, Nilius B, Bindels RJ (2002) Molecular mechanism of active Ca2+ reabsorption in the distal nephron. Annu Rev Physiol 64:529–549CrossRefPubMedGoogle Scholar
  19. 19.
    Peng JB, Brown EM, Hediger MA (2003) Epithelial Ca2+ entry channels: transcellular Ca2+ transport and beyond. J Physiol 551:729–740CrossRefPubMedGoogle Scholar
  20. 20.
    Lee CT, Huynh VM, Lai LW, Lien YH (2002) Cyclosporine A-induced hypercalciuria in calbindin-D28k knockout and wild-type mice. Kidney Int 62:2055–2061CrossRefPubMedGoogle Scholar
  21. 21.
    Zheng W, Xie Y, Li G, Kong J, Feng JQ, Li YC (2004) Critical role of calbindin-D28k in calcium homeostasis revealed by mice lacking both vitamin D receptor and calbindin-D28k. J Biol Chem 279:52406–52413CrossRefPubMedGoogle Scholar
  22. 22.
    Bianco S, Peng JB, Takanaga H, Kos CH, Crescenzi A, Brown EM, Hediger MA (2004) Mice lacking the epithelial calcium channel CaT1 (TRPV6) show a deficiency in intestinal calcium absorption despite high plasma levels of 1,25-dihydroxy vitamin D. FASEB J 18:A706Google Scholar
  23. 23.
    Nijenhuis T, Hoenderop JG, van der Kemp AW, Bindels RJ (2003) Localization and regulation of the epithelial Ca2+ channel TRPV6 in the kidney. J Am Soc Nephrol 14:2731–2740CrossRefPubMedGoogle Scholar
  24. 24.
    Reichel H, Koeffler HP, Norman AW (1989) The role of the vitamin D endocrine system in health and disease. N Engl J Med 320:980–991PubMedGoogle Scholar
  25. 25.
    Friedman PA, Gesek FA (1995) Cellular calcium transport in renal epithelia: measurement, mechanisms, and regulation. Physiol Rev 75:429–471PubMedGoogle Scholar
  26. 26.
    Hemmingsen C, Staun M, Lewin E, Nielsen PK, Olgaard K (1996) Effect of parathyroid hormone on renal calbindin-D28k. J Bone Miner Res 11:1086–1093PubMedGoogle Scholar
  27. 27.
    Friedman PA, Coutermarsh BA, Kennedy SM, Gesek FA (1996) Parathyroid hormone stimulation of calcium transport is mediated by dual signaling mechanisms involving protein kinase A and protein kinase C. Endocrinology 137:13–20CrossRefPubMedGoogle Scholar
  28. 28.
    van Baal J, Hoenderop JG, Groenendijk M, van Os CH, Bindels RJ, Willems PH (1999) Hormone-stimulated Ca2+ transport in rabbit kidney: multiple sites of inhibition by exogenous ATP. Am J Physiol 277:F899–F906PubMedGoogle Scholar
  29. 29.
    Brown AJ, Dusso A, Slatopolsky E (1999) Vitamin D. Am J Physiol 277:F157–F175PubMedGoogle Scholar
  30. 30.
    van Abel M, Hoenderop JG, Van Leeuwen HJ, Bindels R (2003) Down-regulation of calcium transporters in kidney and duodenum by the calcimimetic compound NPS R-467. J Am Soc Nephrol 14:459AGoogle Scholar
  31. 31.
    Hoenderop JG, Dardenne O, Van Abel M, Van Der Kemp AW, Van Os CH, St-Arnaud R, Bindels RJ (2002) Modulation of renal Ca2+ transport protein genes by dietary Ca2+ and 1,25-dihydroxyvitamin D3 in 25-hydroxyvitamin D3–1alpha-hydroxylase knockout mice. FASEB J 16:1398–1406CrossRefPubMedGoogle Scholar
  32. 32.
    Hoenderop JG, Muller D, Van Der Kemp AW, Hartog A, Suzuki M, Ishibashi K, Imai M, Sweep F, Willems PH, Van Os CH et al (2001) Calcitriol controls the epithelial calcium channel in kidney. J Am Soc Nephrol 12:1342–1349PubMedGoogle Scholar
  33. 33.
    van Abel M, Hoenderop JG, van der Kemp AW, van Leeuwen JP, Bindels RJ (2003) Regulation of the epithelial Ca2+ channels in small intestine as studied by quantitative mRNA detection. Am J Physiol 285:G78–G85Google Scholar
  34. 34.
    Van Cromphaut SJ, Dewerchin M, Hoenderop JG, Stockmans I, Van Herck E, Kato S, Bindels RJ, Collen D, Carmeliet P, Bouillon R et al (2001) Duodenal calcium absorption in vitamin D receptor-knockout mice: functional and molecular aspects. Proc Natl Acad Sci USA 98:13324–13329CrossRefPubMedGoogle Scholar
  35. 35.
    Song Y, Peng X, Porta A, Takanaga H, Peng JB, Hediger MA, Fleet JC, Christakos S (2003) Calcium transporter 1 and epithelial calcium channel messenger ribonucleic acid are differentially regulated by 1,25 dihydroxyvitamin D3 in the intestine and kidney of mice. Endocrinology 144:3885–3894CrossRefPubMedGoogle Scholar
  36. 36.
    Bouillon R, Van Cromphaut S, Carmeliet G (2003) Intestinal calcium absorption: molecular vitamin D mediated mechanisms. J Cell Biochem 88:332–339CrossRefPubMedGoogle Scholar
  37. 37.
    Fleet JC, Bradley J, Reddy GS, Ray R, Wood RJ (1996) 1 alpha,25-(OH)2-vitamin D3 analogs with minimal in vivo calcemic activity can stimulate significant transepithelial calcium transport and mRNA expression in vitro. Arch Biochem Biophys 329:228–234CrossRefPubMedGoogle Scholar
  38. 38.
    Fleet JC, Eksir F, Hance KW, Wood RJ (2002) Vitamin D-inducible calcium transport and gene expression in three Caco-2 cell lines. Am J Physiol 283:G618–G625Google Scholar
  39. 39.
    Fleet JC, Wood RJ (1999) Specific 1,25(OH)2D3-mediated regulation of transcellular calcium transport in caco-2 cells. Am J Physiol 276:G958–G964PubMedGoogle Scholar
  40. 40.
    Wood RJ, Tchack L, Taparia S (2001) 1,25-Dihydroxyvitamin D3 increases the expression of the CaT1 epithelial calcium channel in the Caco-2 human intestinal cell line. BMC Physiol 1:11CrossRefPubMedGoogle Scholar
  41. 41.
    Nijenhuis T, Hoenderop JG, van der Kemp AW, Bindels RJ (2003) Localization and regulation of the epithelial Ca2+ channel TRPV6 in the kidney. J Am Soc Nephrol 14:2731–2740CrossRefPubMedGoogle Scholar
  42. 42.
    Brown AJ, Finch J, Slatopolsky E (2002) Differential effects of 19-nor-1,25-dihydroxyvitamin D(2) and 1,25-dihydroxyvitamin D(3) on intestinal calcium and phosphate transport. J Lab Clin Med 139:279–284CrossRefPubMedGoogle Scholar
  43. 43.
    Weber K, Erben RG, Rump A, Adamski J (2001) Gene structure and regulation of the murine epithelial calcium channels ECaC1 and 2. Biochem Biophys Res Commun 289:1287–1294CrossRefPubMedGoogle Scholar
  44. 44.
    Hoenderop JG, van der Kemp AW, Urben CM, Strugnell SA, Bindels RJ (2004) Effects of vitamin D compounds on renal and intestinal Ca2+ transport proteins in 25-hydroxyvitamin D3–1alpha-hydroxylase knockout mice. Kidney Int 66:1082–1089CrossRefPubMedGoogle Scholar
  45. 45.
    Dardenne O, Prud’homme J, Hacking SA, Glorieux FH, St-Arnaud R (2003) Correction of the abnormal mineral ion homeostasis with a high-calcium, high-phosphorus, high-lactose diet rescues the PDDR phenotype of mice deficient for the 25-hydroxyvitamin D-1alpha-hydroxylase (CYP27B1). Bone 32:332–340CrossRefPubMedGoogle Scholar
  46. 46.
    Nordin BE, Need AG, Morris HA, Horowitz M, Robertson WG (1991) Evidence for a renal calcium leak in postmenopausal women. J Clin Endocrinol Metab 72:401–407PubMedGoogle Scholar
  47. 47.
    Prince RL, Smith M, Dick IM, Price RI, Webb PG, Henderson NK, Harris MM (1991) Prevention of postmenopausal osteoporosis. A comparative study of exercise, calcium supplementation, and hormone-replacement therapy. N Engl J Med 325:1189–1195PubMedGoogle Scholar
  48. 48.
    Van Abel M, Hoenderop JG, Dardenne O, St Arnaud R, Van Os CH, Van Leeuwen HJ, Bindels RJ (2002) 1,25-dihydroxyvitamin D3-independent stimulatory effect of estrogen on the expression of ECaC1 in the kidney. J Am Soc Nephrol 13:2102–2109CrossRefPubMedGoogle Scholar
  49. 49.
    van Abel M, Hoenderop JG, van der Kemp AW, van Leeuwen JP, Bindels RJ (2003) Regulation of the epithelial Ca2+ channels in small intestine as studied by quantitative mRNA detection. Am J Physiol 285:G78–G85Google Scholar
  50. 50.
    Van Cromphaut SJ, Rummens K, Stockmans I, Van Herck E, Dijcks FA, Ederveen AG, Carmeliet P, Verhaeghe J, Bouillon R, Carmeliet G (2003) Intestinal calcium transporter genes are upregulated by estrogens and the reproductive cycle through vitamin D receptor-independent mechanisms. J Bone Miner Res 18:1725–1736PubMedGoogle Scholar
  51. 51.
    Weber K, Erben RG, Rump A, Adamski J (2001) Gene structure and regulation of the murine epithelial calcium channels ECaC1 and 2. Biochem Biophys Res Commun 289:1287–1294CrossRefPubMedGoogle Scholar
  52. 52.
    Peng JB, Zhuang L, Berger UV, Adam RM, Williams BJ, Brown EM, Hediger MA, Freeman MR (2001) CaT1 expression correlates with tumor grade in prostate cancer. Biochem Biophys Res Commun 282:729–734CrossRefPubMedGoogle Scholar
  53. 53.
    Wissenbach U, Niemeyer B, Himmerkus N, Fixemer T, Bonkhoff H, Flockerzi V (2004) TRPV6 and prostate cancer: cancer growth beyond the prostate correlates with increased TRPV6 Ca2+ channel expression. Biochem Biophys Res Commun 322:1359–1363CrossRefPubMedGoogle Scholar
  54. 54.
    Wissenbach U, Niemeyer BA, Fixemer T, Schneidewind A, Trost C, Cavalie A, Reus K, Meese E, Bonkhoff H, Flockerzi V (2001) Expression of CaT-like, a novel calcium-selective channel, correlates with the malignancy of prostate cancer. J Biol Chem 276:19461–19468CrossRefPubMedGoogle Scholar
  55. 55.
    Fixemer T, Wissenbach U, Flockerzi V, Bonkhoff H (2003) Expression of the Ca2+-selective cation channel TRPV6 in human prostate cancer: a novel prognostic marker for tumor progression. Oncogene 22:7858–7861CrossRefPubMedGoogle Scholar
  56. 56.
    Rodino MA, Shane E (1998) Osteoporosis after organ transplantation. Am J Med 104:459–469CrossRefPubMedGoogle Scholar
  57. 57.
    Reid IR (1997) Glucocorticoid osteoporosis-mechanisms and management. Eur J Endocrinol 137:209–217CrossRefPubMedGoogle Scholar
  58. 58.
    Stempfle HU, Werner C, Siebert U, Assum T, Wehr U, Rambeck WA, Meiser B, Theisen K, Gartner R (2002) The role of tacrolimus (FK506)-based immunosuppression on bone mineral density and bone turnover after cardiac transplantation: a prospective, longitudinal, randomized, double-blind trial with calcitriol. Transplantation 73:547–552CrossRefPubMedGoogle Scholar
  59. 59.
    Nijenhuis T, Hoenderop JG, Bindels RJ (2004) Downregulation of Ca2+ and Mg2+ transport proteins in the kidney explains tacrolimus (FK506)-induced hypercalciuria and hypomagnesemia. J Am Soc Nephrol 15:549–557CrossRefPubMedGoogle Scholar
  60. 60.
    Liu J, Farmer JD Jr, Lane WS, Friedman J, Weissman I, Schreiber SL (1991) Calcineurin is a common target of cyclophilin-cyclosporin A and FKBP-FK506 complexes. Cell 66:807–815CrossRefPubMedGoogle Scholar
  61. 61.
    Fruman DA, Klee CB, Bierer BE, Burakoff SJ (1992) Calcineurin phosphatase activity in T lymphocytes is inhibited by FK 506 and cyclosporin A. Proc Natl Acad Sci USA 89:3686–3690PubMedGoogle Scholar
  62. 62.
    O’Keefe SJ, Tamura J, Kincaid RL, Tocci MJ, O’Neill EA (1992) FK506- and CsA-sensitive activation of the interleukin-2 promoter by calcineurin. Nature 357:692–694CrossRefPubMedGoogle Scholar
  63. 63.
    Aicher L, Meier G, Norcross AJ, Jakubowski J, Varela MC, Cordier A, Steiner S (1997) Decrease in kidney calbindin-D 28 kDa as a possible mechanism mediating cyclosporine A- and FK-506-induced calciuria and tubular mineralization. Biochem Pharmacol 53:723–731CrossRefPubMedGoogle Scholar
  64. 64.
    Steiner S, Aicher L, Raymackers J, Meheus L, Esquer-Blasco R, Anderson NL, Cordier A (1996) Cyclosporine A decreases the protein level of the calcium-binding protein calbindin-D28 kDa in rat kidney. Biochem Pharmacol 51:253–258CrossRefPubMedGoogle Scholar
  65. 65.
    Siekierka JJ, Hung SH, Poe M, Lin CS, Sigal NH (1989) A cytosolic binding protein for the immunosuppressant FK506 has peptidyl-prolyl isomerase activity but is distinct from cyclophilin. Nature 341:755–757CrossRefPubMedGoogle Scholar
  66. 66.
    Harding MW, Galat A, Uehling DE, Schreiber SL (1989) A receptor for the immunosuppressant FK506 is a cis-trans peptidyl–prolyl isomerase. Nature 341:758–760CrossRefPubMedGoogle Scholar
  67. 67.
    Schreiber SL (1991) Chemistry and biology of the immunophilins and their immunosuppressive ligands. Science 251:283–287PubMedGoogle Scholar
  68. 68.
    Goel M, Garcia R, Estacion M, Schilling WP (2001) Regulation of Drosophila TRPL channels by immunophilin FKBP59. J Biol Chem 276:38762–38773CrossRefPubMedGoogle Scholar
  69. 69.
    Hoenderop JG, Chon H, Gkika D, Bluyssen HA, Holstege FC, St-Arnaud R, Braam B, Bindels RJ (2004) Regulation of gene expression by dietary Ca2+ in kidneys of 25-hydroxyvitamin D3–1α-hydroxylase knockout mice. Kidney Int 65:531–539CrossRefPubMedGoogle Scholar
  70. 70.
    Monroy A, Plata C, Hebert SC, Gamba G (2000) Characterization of the thiazide-sensitive Na+–Cl cotransporter: a new model for ions and diuretics interaction. Am J Physiol 279:F161–F169Google Scholar
  71. 71.
    Ray WA, Griffin MR, Downey W, Melton LJ (1989) Long-term use of thiazide diuretics and risk of hip fracture. Lancet 1:687–690CrossRefPubMedGoogle Scholar
  72. 72.
    Reid IR, Ames RW, Orr-Walker BJ, Clearwater JM, Horne AM, Evans MC, Murray MA, McNeil AR, Gamble GD (2000) Hydrochlorothiazide reduces loss of cortical bone in normal postmenopausal women: a randomized controlled trial. Am J Med 109:362–370CrossRefPubMedGoogle Scholar
  73. 73.
    LaCroix AZ, Wienpahl J, White LR, Wallace RB, Scherr PA, George LK, Cornoni-Huntley J, Ostfeld AM (1990) Thiazide diuretic agents and the incidence of hip fracture. N Engl J Med 322:286–290PubMedGoogle Scholar
  74. 74.
    Costanzo LS, Windhager EE (1978) Calcium and sodium transport by the distal convoluted tubule of the rat. Am J Physiol 235:F492-F506PubMedGoogle Scholar
  75. 75.
    Ellison DH (2000) Divalent cation transport by the distal nephron: insights from Bartter’s and Gitelman’s syndromes. Am J Physiol 279:F616-F625Google Scholar
  76. 76.
    Reilly RF, Ellison DH (2000) Mammalian distal tubule: physiology, pathophysiology, and molecular anatomy. Physiol Rev 80:277–313PubMedGoogle Scholar
  77. 77.
    Dai LJ, Ritchie G, Kerstan D, Kang HS, Cole DE, Quamme GA (2001) Magnesium transport in the renal distal convoluted tubule. Physiol Rev 81:51–84PubMedGoogle Scholar
  78. 78.
    Nijenhuis T, Hoenderop JG, Loffing J, van der Kemp AW, van Os CH, Bindels RJ (2003) Thiazide-induced hypocalciuria is accompanied by a decreased expression of Ca2+ transport proteins in kidney. Kidney Int 64:555–564CrossRefPubMedGoogle Scholar
  79. 79.
    Gitelman HJ, Graham JB, Welt LG (1966) A new familial disorder characterized by hypokalemia and hypomagnesemia. Trans Assoc Am Physicians 79:221–235PubMedGoogle Scholar
  80. 80.
    Lemmink HH, van den Heuvel LP, van Dijk HA, Merkx GF, Smilde TJ, Taschner PE, Monnens LA, Hebert SC, Knoers NV (1996) Linkage of Gitelman syndrome to the thiazide-sensitive sodium-chloride cotransporter gene with identification of mutations in Dutch families. Pediatr Nephrol 10:403–407CrossRefPubMedGoogle Scholar
  81. 81.
    Hoenderop JG, Hartog A, Stuiver M, Doucet A, Willems PH, Bindels RJ (2000) Localization of the epithelial Ca2+ channel in rabbit kidney and intestine. J Am Soc Nephrol 11:1171–1178PubMedGoogle Scholar
  82. 82.
    Biner HL, Arpin-Bott MP, Loffing J, Wang X, Knepper M, Hebert SC, Kaissling B (2002) Human cortical distal nephron: distribution of electrolyte and water transport pathways. J Am Soc Nephrol 13:836–847PubMedGoogle Scholar
  83. 83.
    Loffing J, Loffing-Cueni D, Valderrabano V, Klausli L, Hebert SC, Rossier BC, Hoenderop JG, Bindels RJ, Kaissling B (2001) Distribution of transcellular calcium and sodium transport pathways along mouse distal nephron. Am J Physiol 281:F1021–F1027Google Scholar
  84. 84.
    Friedman PA, Bushinsky DA (1999) Diuretic effects on calcium metabolism. Semin Nephrol 19:551–556PubMedGoogle Scholar
  85. 85.
    Friedman PA (1998) Codependence of renal calcium and sodium transport. Annu Rev Physiol 60:179–197CrossRefPubMedGoogle Scholar
  86. 86.
    Reilly RF, Ellison DH (2000) Mammalian distal tubule: physiology, pathophysiology, and molecular anatomy. Physiol Rev 80:277–313PubMedGoogle Scholar
  87. 87.
    Friedman PA (1998) Codependence of renal calcium and sodium transport. Annu Rev Physiol 60:179–197CrossRefPubMedGoogle Scholar
  88. 88.
    Nijenhuis T, Vallon V, van der Kemp AW, Loffing J, Hoenderop JG, Bindels RJ (2005) Enhanced passive Ca2+ reabsorption and reduced Mg2+ channel abundance explains thiazide-induced hypocalciuria and hypomagnesemia. J Clin Invest 115:1651–1658CrossRefPubMedGoogle Scholar
  89. 89.
    Lee CT, Shang S, Lai LW, Yong KC, Lien YH (2004) Effect of thiazide on renal gene expression of apical calcium channels and calbindins. Am J Physiol 287:F1164–F1170Google Scholar
  90. 90.
    Schultheis PJ, Lorenz JN, Meneton P, Nieman ML, Riddle TM, Flagella M, Duffy JJ, Doetschman T, Miller ML, Shull GE (1998) Phenotype resembling Gitelman’s syndrome in mice lacking the apical Na+–Cl cotransporter of the distal convoluted tubule. J Biol Chem 273:29150–29155CrossRefPubMedGoogle Scholar
  91. 91.
    Loffing J, Vallon V, Loffing-Cueni D, Aregger F, Richter K, Pietri L, Bloch-Faure M, Hoenderop JG, Shull GE, Meneton P, et al (2004) Altered renal distal tubule structure and renal Na+ and Ca2+ handling in a mouse model for Gitelman’s syndrome. J Am Soc Nephrol 15:2276–2288CrossRefPubMedGoogle Scholar
  92. 92.
    Erler I, Hirnet D, Wissenbach U, Flockerzi V, Niemeyer BA (2004) Ca2+-selective TRPV channel architecture and function require a specific ankyrin repeat. J Biol Chem 279:34456–34463CrossRefPubMedGoogle Scholar
  93. 93.
    Chang Q, Gyftogianni E, van de Graaf SF, Hoefs S, Weidema FA, Bindels RJ, Hoenderop JG (2004) Molecular determinants in TRPV5 channel assembly. J Biol Chem 279:54304–54311CrossRefPubMedGoogle Scholar
  94. 94.
    Hellwig N, Albrecht N, Harteneck C, Schultz G, Schaefer M (2005) Homo- and heteromeric assembly of TRPV channel subunits. J Cell Sci 118:917–928CrossRefPubMedGoogle Scholar
  95. 95.
    Peng JB, Hediger MA (2002) A family of calcium-permeable channels in the kidney: distinct roles in renal calcium handling. Curr Opin Nephrol Hypertens 11:555–561CrossRefPubMedGoogle Scholar
  96. 96.
    van de Graaf SF, Hoenderop JG, Gkika D, Lamers D, Prenen J, Rescher U, Gerke V, Staub O, Nilius B, Bindels RJ (2003) Functional expression of the epithelial Ca2+ channels (TRPV5 and TRPV6) requires association of the S100A10-annexin 2 complex. EMBO J 22:1478–1487CrossRefPubMedGoogle Scholar
  97. 97.
    Gerke V, Moss SE (2002) Annexins: from structure to function. Physiol Rev 82:331–371PubMedGoogle Scholar
  98. 98.
    Menaa C, Devlin RD, Reddy SV, Gazitt Y, Choi SJ, Roodman GD (1999) Annexin II increases osteoclast formation by stimulating the proliferation of osteoclast precursors in human marrow cultures. J Clin Invest 103:1605–1613PubMedGoogle Scholar
  99. 99.
    Embark HM, Setiawan I, van de Graaf SF, Boehmer C, Palmada M, Wieder T, Cohen P, Yun CC, Bindels RJ, Lang F (2004) Regulation of the epithelial Ca2+ channel, TRPV5, by the NHE regulating factor NHERF2 and the serum and glucocorticoid inducible kinase isotforms SGK1 and SGK3. J Biol Chem 14:203–212Google Scholar
  100. 100.
    Palmada M, Poppendieck S, Embark HM, van de Graaf SF, Boehmer C, Bindels RJ, Lang F (2005) Requirement of PDZ domains for the stimulation of the epithelial Ca2+ channel TRPV5 by the NHE regulating factor NHERF2 and the serum and glucocorticoid inducible kinase SGK1. Cell Physiol Biochem 15:175–182CrossRefPubMedGoogle Scholar
  101. 101.
    Yun CC, Palmada M, Embark HM, Fedorenko O, Feng Y, Henke G, Setiawan I, Boehmer C, Weinman EJ, Sandrasagra S, et al (2002) The serum and glucocorticoid-inducible kinase SGK1 and the Na+ /H+ exchange regulating factor NHERF2 synergize to stimulate the renal outer medullary K+ channel ROMK1. J Am Soc Nephrol 13:2823–2830CrossRefPubMedGoogle Scholar
  102. 102.
    Palmada M, Embark HM, Yun C, Bohmer C, Lang F (2003) Molecular requirements for the regulation of the renal outer medullary K+ channel ROMK1 by the serum- and glucocorticoid-inducible kinase SGK1. Biochem Biophys Res Commun 311:629–634CrossRefPubMedGoogle Scholar
  103. 103.
    Vennekens R, Hoenderop JG, Prenen J, Stuiver M, Willems PH, Droogmans G, Nilius B, Bindels RJ (2000) Permeation and gating properties of the novel epithelial Ca2+ channel. J Biol Chem 275:3963–3969CrossRefPubMedGoogle Scholar
  104. 104.
    Nilius B, Vennekens R, Prenen J, Hoenderop JG, Droogmans G, Bindels RJ (2001) The single pore residue D542 determines Ca2+ permeation and Mg2+ block of the epithelial Ca2+ channel. J Biol Chem 276:1020–1025CrossRefPubMedGoogle Scholar
  105. 105.
    Zuhlke RD, Pitt GS, Deisseroth K, Tsien RW, Reuter H (1999) Calmodulin supports both inactivation and facilitation of L-type calcium channels. Nature 399:159–162CrossRefPubMedGoogle Scholar
  106. 106.
    DeMaria CD, Soong TW, Alseikhan BA, Alvania RS, Yue DT (2001) Calmodulin bifurcates the local Ca2+ signal that modulates P/Q-type Ca2+ channels. Nature 411:484–489CrossRefPubMedGoogle Scholar
  107. 107.
    Niemeyer BA, Bergs C, Wissenbach U, Flockerzi V, Trost C (2001) Competitive regulation of CaT-like-mediated Ca2+ entry by protein kinase C and calmodulin. Proc Natl Acad Sci USA 98:3600–3605CrossRefPubMedGoogle Scholar
  108. 108.
    Nilius B, Weidema AF, Prenen J, Hoenderop JG, Vennekens R, Hoefs S, Droogmans G, Bindels RJ (2003) The carboxyl-terminus of the epithelial Ca2+ channel ECaC1 is involved in Ca2+ -dependent inactivation. Pflugers Arch 445:584–588PubMedGoogle Scholar
  109. 109.
    Lambers TT, Weidema AF, Nilius B, Hoenderop JG, Bindels RJ (2004) Regulation of the mouse epithelial Ca2+ channel TRPV6, by the Ca2+-sensor calmodulin. J Biol Chem 279(28):28855–28861CrossRefPubMedGoogle Scholar
  110. 110.
    Gkika D, Mahieu F, Nilius B, Hoenderop JG, Bindels RJ (2004) 80K-H as a new Ca2+ sensor regulating the activity of the epithelial Ca2+ channel transient receptor potential cation channel V5 (TRPV5). J Biol Chem 279:26351–26357CrossRefPubMedGoogle Scholar
  111. 111.
    Hirai M, Shimizu N (1990) Purification of two distinct proteins of approximate Mr 80,000 from human epithelial cells and identification as proper substrates for protein kinase C. Biochem J 270:583–589PubMedGoogle Scholar
  112. 112.
    Bindels RJ, Hartog A, Abrahamse SL, Van Os CH (1994) Effects of pH on apical calcium entry and active calcium transport in rabbit cortical collecting system. Am J Physiol 266:F620–F627PubMedGoogle Scholar
  113. 113.
    Vennekens R, Prenen J, Hoenderop JG, Bindels RJ, Droogmans G, Nilius B (2001) Modulation of the epithelial Ca2+ channel ECaC by extracellular pH. Pflugers Arch 442:237–242CrossRefPubMedGoogle Scholar
  114. 114.
    Peng JB, Chen XZ, Berger UV, Vassilev PM, Brown EM, Hediger MA (2000) A rat kidney-specific calcium transporter in the distal nephron. J Biol Chem 275:28186–28194PubMedGoogle Scholar
  115. 115.
    Yeh BI, Sun TJ, Lee JZ, Chen HH, Huang CL (2003) Mechanism and molecular determinant for regulation of rabbit transient receptor potential type 5 (TRPV5) channel by extracellular pH. J Biol Chem 278:51044–51052CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • Tom Nijenhuis
    • 1
  • Joost G. J. Hoenderop
    • 1
  • René J. M. Bindels
    • 1
  1. 1.Department of Physiology, Nijmegen Centre for Molecular Life SciencesRadboud University Nijmegen Medical CentreHB NijmegenThe Netherlands

Personalised recommendations