Skip to main content
Log in

The effect of neuronal morphology and membrane-permeant weak acid and base on the dissipation of depolarization-induced pH gradients in snail neurons

  • Cellular Neurophysiology
  • Published:
Pflügers Archiv Aims and scope Submit manuscript

Abstract

Neuronal depolarization causes larger intracellular pH (pHi) shifts in axonal and dendritic regions than in the cell body. In this paper, we present evidence relating the time for collapse of these gradients to neuronal morphology. We have used ratiometric pHi measurements using 8-hydroxypyrene-1,3,6-trisulfonic acid (HPTS) in whole-cell patch-clamped snail neurons to study the collapse of longitudinal pH gradients. Using depolarization to open voltage-gated proton channels, we produced alkaline pHi microdomains. In the absence of added mobile buffers, facilitated H+ diffusion down the length of the axon plays a critical role in determining pHi microdomain lifetime, with axons of ∼100 μm allowing pH differences to be maintained for >60 s. An application of mobile, membrane-permeant pH buffers accelerated the collapse of the alkaline-pH gradients but, even at 30 mM, was unable to abolish them. Modeling of the pHi dynamics showed that both the relatively weak effect of the weak acid/base on the peak size of the pH gradient and the accelerated collapse of the pH gradient could be due to the time taken for equilibration of the weak acid and base across the cell. We propose that appropriate weak acid/base mixes may provide a simple method for studying the role of local pHi signals without perturbing steady-state pHi. Furthermore, an extrapolation of our in vitro data to longer and thinner neuronal structures found in the mammalian nervous system suggests that dendritic and axonal pHi are likely to be dominated by local pHi-regulating mechanisms rather than simply following the soma pHi.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Meech RW, Thomas RC (1977) The effect of calcium injection on the intracellular sodium and pH of snail neurones. J Physiol (Lond) 265:867–879

    CAS  Google Scholar 

  2. Ahmed Z, Connor JA (1980) Intracellular pH changes induced by calcium influx during electrical activity in molluscan neurones. J Gen Physiol 75:403–426

    Article  PubMed  CAS  Google Scholar 

  3. Schwiening CJ, Kennedy HJ, Thomas RC (1993) Proton transport by the plasma membrane Ca2+–ATPase of voltage-clamped snail neurones in isolated ganglia. J Physiol 473:39P

    Google Scholar 

  4. Schwiening CJ, Willoughby D (2002) Depolarization-induced pH microdomains and their relationship to calcium transients in isolated snail neurones. J Physiol 538:371–382

    Article  PubMed  CAS  Google Scholar 

  5. Willoughby D, Schwiening CJ (2002) Electrically evoked dendritic pH transients in rat cerebellar Purkinje cells. J Physiol 544:487–499

    Article  PubMed  CAS  Google Scholar 

  6. Thomas RC (1976) The effect of carbon dioxide on the intracellular pH and buffering power of snail neurones. J Physiol (Lond) 255:715–735

    CAS  Google Scholar 

  7. Abercrombie RF, Hart CE (1986) Calcium and proton buffering and diffusion in isolated cytoplasm from Myxicola axons. Am J Physiol 250:C391–C405

    PubMed  CAS  Google Scholar 

  8. Al-Baldawi NF, Abercrombie RF (1992) Cytoplasmic hydrogen-ion diffusion-coefficient. Biophys J 61:1470–1479

    Article  PubMed  CAS  Google Scholar 

  9. Spitzer.W, Skolnick RL, Peercy BE, Keener JP, Vaughan-Jones RD (2002) Facilitation of intracellular H+ ion mobility by CO2/HCO3 in rabbit ventricular myocytes is regulated by carbonic anhydrase. J Physiol (Lond) 541:159–167

    Article  CAS  Google Scholar 

  10. Vaughan-Jones RD, Peercy BE, Keener JP, Spitzer KW (2002) Intrinsic H+ ion mobility in the rabbit ventricular myocyte. J Physiol (Lond) 541:139–158

    Article  CAS  Google Scholar 

  11. Zaniboni M, Swietach P, Rossini A, Yamamoto T, Spitzer KW, Vaughan-Jones RD (2003) Intracellular proton mobility and buffering power in cardiac ventricular myocytes from rat, rabbit, and guinea pig. Am J Physiol Heart Circ Physiol 285:H1236–H1246

    PubMed  CAS  Google Scholar 

  12. Swietach P, Zaniboni M, Stewart AK, Rossini A, Spitzer KW, Vaughan-Jones RD (2003) Modelling intracellular H+ ion diffusion. Prog Biophys Mol Biol 83:69–100

    Article  PubMed  CAS  Google Scholar 

  13. Dickens CJ, Gillespie JI, Greenwell JR (1989) Interactions between intracellular pH and calcium in single mouse neuroblastoma (N2A) and rat pheochromocytoma cells (PC12). Q J Exp Physiol 74:671–679

    PubMed  CAS  Google Scholar 

  14. Seksek O, Bolard J (1996) Nuclear pH gradient in mammalian cells revealed by laser microspectrofluorimetry. J Cell Sci 109(1):257–262

    PubMed  CAS  Google Scholar 

  15. Masuda A, Oyamada M, Nagaoka T, Tateishi N, Takamatsu T (1998) Regulation of cytosol–nucleus pH gradients by K+/H+ exchange mechanism in the nuclear envelope of neonatal rat astrocytes. Brain Res 807:70–77

    Article  PubMed  CAS  Google Scholar 

  16. Ro H, Carson JH (2004) pH microdomains in oligodendrocytes. J Biol Chem 279(35):37115–37123

    Article  PubMed  CAS  Google Scholar 

  17. Willoughby D, Thomas RC, Schwiening CJ (1999) A role for Na+/H+ exchange in pH regulation in Helix neurones. Pflugers Arch 438:741–749

    Article  PubMed  CAS  Google Scholar 

  18. Thomas RC, Meech RW (1982) Hydrogen ion currents and intracellular pH in depolarised voltage-clamped snail neurones. Nature (Lond) 299:826–828

    Article  CAS  Google Scholar 

  19. Trapp S, Luckermann M, Kaila K, Ballanyi K (1996) Acidosis of hippocampal-neurons mediated by a plasmalemmal Ca2+/H+ pump. Neuroreport 7:2000–2004

    Article  PubMed  CAS  Google Scholar 

  20. Thomas RC (1977) The role of bicarbonate, chloride and sodium ions in the regulation of intracellular pH in snail neurones. J Physiol 273:317–338

    PubMed  CAS  Google Scholar 

  21. Schwiening CJ, Boron WF (1994) Na-dependent Cl–HCO3 exchange regulates intracellular pH in freshly isolated pyramidal neurones from the rat hippocampus. J Physiol (Lond) 475:59–67

    CAS  Google Scholar 

  22. Willoughby D, Thomas RC, Schwiening CJ (1998) Comparison of simultaneous pH measurements made with 8-hydroxypyrene-1,3, 6-trisulphonic acid (HPTS) and pit-sensitive microelectrodes in snail neurones. Pflugers Arch 436:615–622

    Article  PubMed  CAS  Google Scholar 

  23. Eisner DA, Kenning NA, O’Neill SC, Pocock G, Richards CD, Valdeolmillos M (1989) A novel method for absolute calibration of intracellular pH indicators. Pflugers Arch 413:553–558

    Article  PubMed  CAS  Google Scholar 

  24. Swietach P, Vaughan-Jones RD (2005) Relationship between intracellular pH and proton mobility in rat and guinea-pig ventricular myocytes. J Physiol (in press)

  25. Roos A, Boron WF (1981) Intracellular pH. Physiol Rev 61:296–434

    PubMed  CAS  Google Scholar 

  26. Pantazis A, Schwiening CJ (2002) The effect of mobile hydrogen ion buffers on proton channel-evoked pH gradients in Helix aspersa neurones. J Physiol 539:13P

    Google Scholar 

  27. Grynkiewicz G, Poenie M, Tsien RY (1985) A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem 260:3440–3450

    PubMed  CAS  Google Scholar 

  28. Thomas R, Pagnotta S, Nistri A (2003) Whole-cell recording of intracellular pH with silanized and oiled patch-type single or double-barreled microelectrodes. Pflugers Arch 447(2):259–265

    Article  PubMed  CAS  Google Scholar 

  29. Bock G, Marsh J (1988) Proton passage across cell membranes, 1st edn. Wiley, Sussex, UK

    Google Scholar 

  30. Marcaggi P, Coles JA (2000) A Cl(−) cotransporter selective for NH(4)(+) over K(+) in glial cells of bee retina. J Gen Physiol 116:125–142

    Article  PubMed  CAS  Google Scholar 

  31. Szatkowski MS, Thomas RC (1989) The intrinsic intracellular H+ buffering power of snail neurones. J Physiol (Lond) 409:89–101

    CAS  Google Scholar 

  32. Kerkut GA, Lambert JD, Gayton RJ, Loker JE, Walder RJ (1975) Mapping of nerve cells in the suboesophageal ganglia of Helix aspersa. Comp Biochem Physiol A 50:1–25

    Article  PubMed  CAS  Google Scholar 

  33. Stewart AK, Boyd CA, Vaughan-Jones RD (1999) A novel role for carbonic anhydrase: cytoplasmic pH gradient dissipation in mouse small intestinal enterocytes. J Physiol 516:209–217

    Article  PubMed  CAS  Google Scholar 

  34. Majewska A, Tashiro A, Yuste R (2000) Reulation of spine calcium dynamics by rapid spine motility. J Neurosci 20(22):8262–8268

    PubMed  CAS  Google Scholar 

  35. Bain PG, O’Brien MD, Keevil SF, Porter DA (1992) Familial periodic cerebellar ataxia: a problem of cerebellar intracellular pH homeostasis. Ann Neurol 31:147–154

    Article  PubMed  CAS  Google Scholar 

  36. Nimchinsky EA, Sabatini BL, Svoboda K (2002) Structure and function of dendritic spines. Annu Rev Physiol 64: 313–353

    Article  PubMed  CAS  Google Scholar 

  37. Tombaugh GC (1998) Intracellular pH buffering shapes activity-dependent Ca2+ dynamics in dendrites of CA1 interneurons. J Neurophysiol 80:1702–1712

    PubMed  CAS  Google Scholar 

  38. Cooper DS, Saxena NC, Yang HS, Lee HJ, Moring AG, Lee A, Choi I (2005) Molecular and functional characterization of the electroneutral Na/HCO3 cotransporter NBCn1 in rat hippocampal neurons. J Biol Chem 280:17823–17830

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

AP was supported by a Vacation Studentship from the Wellcome Trust. We thank the MRC for past support, and acknowledge its desire to have funded this work. We also acknowledge the University of Cambridge for consumables funding and Roger Thomas for comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. J. Schwiening.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pantazis, A., Keegan, P., Postma, M. et al. The effect of neuronal morphology and membrane-permeant weak acid and base on the dissipation of depolarization-induced pH gradients in snail neurons. Pflugers Arch - Eur J Physiol 452, 175–187 (2006). https://doi.org/10.1007/s00424-005-0019-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-005-0019-4

Keywords

Navigation