Skip to main content
Log in

Regulation of a family of inwardly rectifying potassium channels (Kir2) by the m1 muscarinic receptor and the small GTPase Rho

  • Cellular Neurophysiology
  • Published:
Pflügers Archiv Aims and scope Submit manuscript

Abstract

Inwardly rectifying potassium channels Kir2.1–Kir2.3 are important regulators of membrane potential and, thus, control cellular excitability. However, little is known about the regulation of these channels. Therefore, we studied the mechanisms mediating the regulation of Kir2.1–Kir2.3 by the G-protein-coupled m1 muscarinic receptor using the whole-cell patch-clamp technique and recombinant expression in the tsA201 mammalian cell line. Stimulation of the m1 muscarinic receptor inhibited all subtypes of inward rectifier tested, Kir2.1–Kir2.3. The inhibition of each channel subtype was reversible and was attenuated by the muscarinic receptor antagonist, atropine. The protein kinase C activator phorbol 12-myristate 13-acetate (PMA) mimicked the effects of m1 receptor activation by inhibiting Kir2.1 currents. However, PMA had no effect on Kir2.2 or Kir2.3. Inclusion of 200-μM guanosine 5′-O-(2-thiodiphosphate) (GDPβS) in the patch pipette solution prevented the effects of m1 muscarinic receptor stimulation on all three of the channel subtypes tested, confirming the mediation of the responses by G-proteins. Cotransfection with the activated mutant of the small GTPase Rho reduced current density, while C3 exoenzyme, a selective inhibitor of Rho, attenuated the m1 muscarinic receptor-induced inhibition of Kir2.1–Kir2.3. Also, buffering the intracellular calcium concentration with a high concentration of EGTA abolished the m1 receptor-induced inhibition of Kir2.1–Kir2.3, implicating a role for calcium in these responses. These results indicate that all three of the Kir2 channels are similarly inhibited by m1 muscarinic receptor stimulation through calcium-dependent activation of the small GTPase Rho.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ariano MA, Cepeda C, Calvert CR, Flores-Hernandez J, Hernandez-Echeagaray E, Klapstein GJ, Chandler SH, Aronin N, DiFiglia M, Levine MS (2005) Striatal potassium channel dysfunction in Huntington’s disease transgenic mice. J Neurophysiol 93:2565–2574

    Article  PubMed  CAS  Google Scholar 

  2. Braun AP, Fedida D, Giles WR (1992) Activation of alpha 1-adrenoceptors modulates the inwardly rectifying potassium currents of mammalian atrial myocytes. Pflugers Arch 421:431–439

    Article  PubMed  CAS  Google Scholar 

  3. Cachero TG, Morielli AD, Peralta EG (1998) The small GTP-binding protein RhoA regulates a delayed rectifier potassium channel. Cell 93:1077–1085

    Article  PubMed  CAS  Google Scholar 

  4. Chen C, Okayama H (1987) High efficiency transformation of mammalian cells by plasmid DNA. Mol Cell Biol 8:2745–2752

    Google Scholar 

  5. Chikumi H, Vazquez-Prado J, Servitja JM, Miyazaki H, Gutkind JS (2002) Potent activation of RhoA by Galpha q and Gq-coupled receptors. J Biol Chem 277:27130–27134

    Article  PubMed  CAS  Google Scholar 

  6. Chuang H, Jan YN, Jan LY (1997) Regulation of IRK3 inward rectifier K± channel by m1 acetylcholine receptor and intracellular magnesium. Cell 89:1121–1132

    Article  PubMed  CAS  Google Scholar 

  7. Cohen NA, Sha Q, Makhina EN, Lopatin AN, Linder ME, Snyder SH, Nichols CG (1996) Inhibition of an inward rectifier potassium channel (Kir 2.3) by G-protein βγ subunits. J Biol Chem 271:32301–32305

    Article  PubMed  CAS  Google Scholar 

  8. Coso OA, Chiariello M, Yu JC, Teramoto H, Crespo P, Xu N, Miki T, Gutkind JS (1995) The small GTP-binding proteins Rac1 and Cdc42 regulate the activity of the JNK/SAPK signaling pathway. Cell 81:1137–1146

    Article  PubMed  CAS  Google Scholar 

  9. Du X, Zhang H, Lopes C, Mirshahi T, Rohacs T, Logothetis DE (2004) Characteristic interactions with phosphatidylinositol 4,5-bisphosphate determine regulation of kir channels by diverse modulators. J Biol Chem 279:37271–37281

    Article  PubMed  CAS  Google Scholar 

  10. Fakler B, Brandle U, Glowatzki E, Zenner H-P, Ruppersberg JP (1994) Kir 2.1 inward rectifier K± channels are regulated independently by protein kinases and ATP hydrolysis. Neuron 13:1413–1420

    Article  PubMed  CAS  Google Scholar 

  11. Fedida D, Braun AP, Giles WR (1991) Alpha 1-adrenoceptors reduce background K± current in rabbit ventricular myocytes. J Physiol 441:673–684

    PubMed  CAS  Google Scholar 

  12. Firth TA, Jones SVP (2001) GTP-binding protein Gq mediates muscarinic receptor-induced inhibition of the inwardly rectifying potassium channel IRK1 (Kir 2.1). Neuropharmacology 40:358–365

    Article  PubMed  CAS  Google Scholar 

  13. Gilman AG (1987) G-proteins: transducers of receptor-generated signals. Annu Rev Biochem 56:615–649

    Article  PubMed  CAS  Google Scholar 

  14. Giovannardi S, Forlani G, Balestrini M, Bossi E, Tonini R, Sturani E, Peres A, Zippel R (2002) Modulation of the inward rectifier potassium channel IRK1 by the Ras signaling pathway. J Biol Chem 277:12158–12163

    Article  PubMed  CAS  Google Scholar 

  15. Henry P, Pearson WL, Nichols CG (1996) Protein kinase C inhibition of cloned inward rectifier (HRK1/KIR2.3) K± channels expressed in Xenopus oocytes. J Physiol 495:681–688

    PubMed  CAS  Google Scholar 

  16. Hill CS, Wynne J, Treisman R (1995) The Rho family GTPases RhoA, Rac1 and Cdc42Hs regulate transcriptional activation by SRF. Cell 81:1159–1170

    Article  PubMed  CAS  Google Scholar 

  17. Hoang QV, Zhao P, Nakajima S, Nakajima Y (2004) Orexin (hypocretin) effects on constitutively active inward rectifier K± channels in cultured nucleus basalis neurons. J Neurophysiol 92:3183–3191

    Article  PubMed  CAS  Google Scholar 

  18. Holinstat M, Mehta D, Kozasa T, Minshall RD, Malik AB (2003) Protein kinase C alpha-induced p115RhoGEF phosphorylation signals endothelial cytoskeletal rearrangement. J Biol Chem 278:28793–28798

    Article  PubMed  CAS  Google Scholar 

  19. Inanobe A, Fujita A, Ito M, Tomoike H, Inageda K, Kurachi Y (2002) Inward rectifier K± channel Kir2.3 is localized at the postsynaptic membrane of excitatory synapses. Am J Physiol Cell Physiol 282:C1396–C1403

    PubMed  CAS  Google Scholar 

  20. Jones SVP (1996) Modulation of the inwardly rectifying potassium channel IRK1 by the m1 muscarinic receptor. Mol Pharmacol 49:662–667

    PubMed  CAS  Google Scholar 

  21. Jones SVP (1997) Dual modulation of an inwardly rectifying potassium conductance. Neuropharmacology 36:209–215

    Article  PubMed  CAS  Google Scholar 

  22. Jones SVP (2003) Role of small GTPases in modulation of inwardly rectifying potassium channels. Mol Pharmacol 64:987–993

    Article  PubMed  CAS  Google Scholar 

  23. Kamouchi M, Van Den Bremt K, Eggermont J, Droogmans G, Nilius B (1997) Modulation of inwardly rectifying potassium channels in cultured bovine pulmonary artery endothelial cells. J Physiol 504:545–556

    Article  PubMed  CAS  Google Scholar 

  24. Kanazirska MV, Vassilev PM, Quinn SJ, Tillotson DL, Williams GH (1992) Single potassium channels in adrenal zona glomerulosa cells. II. Inhibition by angiotensin II. Am J Physiol 263:E760–E765

    PubMed  CAS  Google Scholar 

  25. Karle CA, Zitron E, Zhang W, Wendt-Nordahl G, Kathofer S, Thomas D, Gut B, Scholz E, Vahl C-F, Katus HA, Kiehn J (2002) Human cardiac inwardly-rectifying K± channel Kir2.1b is inhibited by direct protein kinase C-dependent regulation in human isolated cardiomyocytes and in an expression system. Circulation 106:1493–1499

    Article  PubMed  CAS  Google Scholar 

  26. Koyano K, Velimirovic BM, Grigg JJ, Nakajima S, Nakajima Y (1993) Two signal transduction mechanisms of substance P-induced depolarisation in locus coeruleus neurons. Eur J Neurosci 5:1189–1197

    Article  PubMed  CAS  Google Scholar 

  27. Kubo Y, Baldwin TJ, Jan YN, Jan LY (1993) Primary structure and functional expression of a mouse inward rectifier potassium channel. Nature 362:127–133

    Article  PubMed  CAS  Google Scholar 

  28. Morishige K-I, Takahashi N, Jahangir A, Yamada M, Koyama H, Zanelli JS, Kurachi Y (1994) Molecular cloning and functional expression of a novel brain-specific inward rectfier potassium channel. FEBS Lett 346:251–256

    Article  PubMed  CAS  Google Scholar 

  29. Nilius B, Voets T, Barth H, Aktories K, Kaibuchi K, Droogmans G, Eggermont J (1999) Role of Rho and Rho kinase in the activation of volume regulated anion channels in bovine endothelial cells. J Physiol 516:67–74

    Article  PubMed  CAS  Google Scholar 

  30. Nishizuka Y (1995) Protein kinase C and lipid signaling for sustained cellular responses. FASEB J 9:484–496

    PubMed  CAS  Google Scholar 

  31. Pan ZZ, Williams JT (1994) Muscarine hyperpolarizes a subpopulation of neurons by activating an M2 muscarinic receptor in rat nucleus raphe magnus in vitro. J Neurosci 14:1332–1338

    PubMed  CAS  Google Scholar 

  32. Perillan PR, Chen M, Potts EA, Simard JM (2002) Transforming growth factor-beta 1 regulates Kir2.3 inward rectifier K± channels via phospholipase C and protein kinase C-delta in reactive astrocytes from adult rat brain. J Biol Chem 277:1974–1980

    Article  PubMed  CAS  Google Scholar 

  33. Plaster NM, Tawil R, Tristani-Firouzi M, Canun S, Bendahhou S, Tsunoda A, Donaldson MR, Iannaccone ST, Brunt E, Barohn R et al (2001) Mutations in Kir2.1 cause the developmental and episodic electrical phenotypes of Andersen’s syndrome. Cell 105:511–519

    Article  PubMed  CAS  Google Scholar 

  34. Pruss H, Derst C, Lommel R, Veh RW (2005) Differential distribution of individual subunits of strongly inwardly rectifying potassium channels (Kir2 family) in rat brain. Brain Res Mol Brain Res 139:63–79

    Article  PubMed  CAS  Google Scholar 

  35. Roy ML, Sontheimer H (1995) β-Adrenergic modulation of glial inwardly rectifying potassium channels. J Neurochem 64:1576–1584

    Article  PubMed  CAS  Google Scholar 

  36. Ruppersberg JP (2000) Intracellular regulation of inward rectifier K± channels. Pflugers Arch 441:1–11

    Article  PubMed  CAS  Google Scholar 

  37. Shen K-Z, North RA (1992) Substance P opens cation channels and closes potassium channels in rat locus coeruleus neurons. Neuroscience 50:345–353

    Article  PubMed  CAS  Google Scholar 

  38. Stanfield PR, Nakajima S, Nakajima Y (2002) Constitutively active and G-protein coupled inward rectifier K± channels: Kir2 and Kir3.0. Rev Physiol Biochem Pharmacol 145:47–179

    Article  PubMed  CAS  Google Scholar 

  39. Stonehouse AH, Pringle JH, Norman RI, Stanfield PR, Conley EC, Brammar WJ (1999) Co-localization of the inwardly rectifying potassium ion channel, Kir2.2, and the substance P receptor in single locus coeruleus neurons. Ann N Y Acad Sci 897:429–431

    Article  PubMed  CAS  Google Scholar 

  40. Stonehouse AH, Pringle JH, Norman RI, Stanfield PR, Conley EC, Brammmar WJ (1999) Characterisation of Kir2 proteins in the rat cerebellum and hippocampus by polyclonal antibodies. Histochem Cell Biol 112:457–465

    Article  PubMed  CAS  Google Scholar 

  41. Storey NM, O’Bryan JP, Armstrong DL (2002) Rac and Rho mediate opposing hormonal regulation of the ether-a-go-go-related potassium channel. Curr Biol 12:27–33

    Article  PubMed  CAS  Google Scholar 

  42. Takahashi N, Morishige K-I, Jahangir A, Yamada M, Findlay I, Koyama H, Kurachi Y (1994) Molecular cloning and functional expression of cDNA encoding a second class of inward rectifier potassium channels in the mouse brain. J Biol Chem 37:23274–23279

    Google Scholar 

  43. Takano K, Stanfield PR, Nakajima S, Nakajima Y (1995) Protein kinase C-mediated inhibition of an inward rectifier potassium channel by substance P in nucleus basalis neurons. Neuron 14:999–1008

    Article  PubMed  CAS  Google Scholar 

  44. Takano M, Kuratomi S (2003) Regulation of cardiac inwardly rectifying potassium channels by membrane lipid metabolism. Prog Biophys Mol Biol 81:67–79

    Article  PubMed  CAS  Google Scholar 

  45. Tang W, Yang X-C (1994) Cloning a novel human inward rectifier potassium channel and its functional expression in Xenopus oocytes. FEBS Lett 348:239–243

    Article  PubMed  CAS  Google Scholar 

  46. Tang W, Qin CL, Yang X-C (1995) Cloning, localization, and functional expression of a human brain inward rectifier potassium channel (hIRK1). Recept Channels 3:175–183

    PubMed  CAS  Google Scholar 

  47. Uchimura N, North RA (1990) Muscarine reduces inwardly rectifying potassium conductance in rat nucleus accumbens neurones. J Physiol 422:369–380

    PubMed  CAS  Google Scholar 

  48. Wang H, Yang B, Zhang Y, Han H, Wang J, Shi H, Wang Z (2001) Different subtypes of alpha-1-adrenoceptor modulate different K± currents via different signaling pathways in canine ventricular myocytes. J Biol Chem 276:40811–40816

    Article  PubMed  CAS  Google Scholar 

  49. Wischmeyer E, Karschin A (1996) Receptor stimulation causes slow inhibition of IRK1 inwardly rectifying potassium channels by direct protein kinase A-mediated phosphorylation. Proc Natl Acad Sci U S A 93:5819–5823

    Article  PubMed  CAS  Google Scholar 

  50. Wischmeyer E, Doring F, Karschin A (1998) Acute suppression of inwardly rectifying Kir 2.1 channels by direct tyrosine kinase phosphorylation. J Biol Chem 273:34063–34068

    Article  PubMed  CAS  Google Scholar 

  51. Womble MD, Moises HC (1993) Hyperpolarization-activated currents in neurons of the rat basolateral amygdala. J Neurophysiol 70:2056–2065

    PubMed  CAS  Google Scholar 

  52. Yatani A, Irie K, Otani T, Abdellatif M, Wei L (2005) RhoA GTPase regulates l-type Ca2± currents in cardiac myocytes. Am J Physiol Heart Circ Physiol 288:H650–H659

    Article  PubMed  CAS  Google Scholar 

  53. Zaritsky JJ, Redell JB, Tempel BL, Schwarz TL (2001) The consequences of disrupting cardiac inwardly rectifying K(±) current (I(K1)) as revealed by the targeted deletion of the murine Kir2.1 and Kir2.2 genes. J Physiol 533:697–710

    Article  PubMed  CAS  Google Scholar 

  54. Zhu G, Qu Z, Cui N, Jiang C (1999) Suppression of Kir2.3 activity by protein kinase C phosphorylation of the channel protein at threonine 53. J Biol Chem 274:11643–11646

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Drs. Y. Kubo and L.Y. Jan for the kind gift of mKir2.1 cDNA, Dr. W. Tang for the kind gifts of hKir2.1 and hKir2.2 cDNAs, Dr. Y. Kurachi for the kind gifts mKir2.2 and mKir2.3 cDNAs, Dr. J.S. Gutkind for the Rho mutants, and Dr. Treisman for the EFC3 plasmid. This work was funded in part by National Institutes of Health grant NS29634 and by the National Science Foundation Office of Experimental Program to Stimulate Competitive Research (NSF EPSCor).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Penelope Jones.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rossignol, T.M., Jones, S.V.P. Regulation of a family of inwardly rectifying potassium channels (Kir2) by the m1 muscarinic receptor and the small GTPase Rho. Pflugers Arch - Eur J Physiol 452, 164–174 (2006). https://doi.org/10.1007/s00424-005-0014-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-005-0014-9

Keywords

Navigation