Skip to main content
Log in

Histidine 518 in the S6-CNBD linker controls pH dependence and gating of HCN channel from sea-urchin sperm

  • Ion Channels, Transporters
  • Published:
Pflügers Archiv Aims and scope Submit manuscript

Abstract

Sperm motility is a tightly regulated process. One of the crucial factors determining the swimming of the sea-urchin sperm is an elevation of intracellular pH (pHi). The possibility that its hyperpolarisation-activated cyclic nucleotide-gated channel (SpHCN) is modulated directly by pH is addressed here. Site-directed mutagenesis showed that histidine 518 from the linker connecting the S6 helix with the cyclic nucleotide binding domain is responsible for the pH modulation of current kinetics and voltage dependence of activation. The effect of mutating histidine 518 to serine (H518S) on the time constant of activation was maximal at pH 6.4: 180±20 ms in the wild-type (wt) but only 56±10 ms in the H518S mutant channel. Furthermore, histidine 518 accounted for 31% of the shift in the voltage of half activation (V 1/2) in wt following a pH change from 6.4 to 8.4. The mutation H518S also shifted V 1/2 by 19 mV at pH 7.4 (−50.2±0.2 and −69±2 mV for H518S and wt, respectively). This indicates that histidine 518 couples voltage sensing to gating. The wt and H518S channels had a different affinity for cyclic adenosine monophosphate (cAMP) (IC50 1.0±0.02 and 2.5±0.06 µM, respectively). Changes in pHi also modulated channel selectivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1A, B
Fig. 2A–D
Fig. 3A–D
Fig. 4A, B
Fig. 5A–D
Fig. 6A, B
Fig. 7A–F

Similar content being viewed by others

References

  1. Chen J, Mitcheson JS, Lin M, Sanguinetti MC (2000) Functional Roles of Charged Residues in the Putative Voltage Sensor of the HCN2 Pacemaker Channel. J Biol Chem 275:36465–36471

    Article  CAS  PubMed  Google Scholar 

  2. Chen J, Mitcheson JS, Tristani-Firouzi M, Lin M, Sanguinetti MC (2001) The S4-S5 linker couples voltage sensing and activation of pacemaker channels. Proc Natl Acad Sci USA 98:11277–11282

    Article  CAS  PubMed  Google Scholar 

  3. Chen S, Wang J, Siegelbaum SA (2001) Properties of hyperpolarization-activated pacemaker current defined by coassembly of HCN1 and HCN2 subunits and basal modulation by cyclic nucleotide. J Gen Physiol 117:491–504

    Article  CAS  PubMed  Google Scholar 

  4. Christen R, Schackmann RW, Shapiro BM (1982) Elevation of the intracellular pH activates respiration and motility of sperm of the sea urchin, Strongylocentrotus purpuratus. J Biol Chem 257:14881–14890

    CAS  PubMed  Google Scholar 

  5. Darszon A, Lievano A, Beltran C (1996) Ion channels: key elements in gamete signaling. Curr Top Dev Biol 34:117–167

    CAS  PubMed  Google Scholar 

  6. Darszon A, Labarca P, Nishigaki T, Espinosa F (1999) Ion channels in sperm physiology. Physiol Rev 79:481–510

    CAS  PubMed  Google Scholar 

  7. Darszon A, Beltran C, Felix R, Nishigaki T, Trevino CL (2001) Ion transport in sperm signaling. Dev Biol 240:1–14

    Article  CAS  PubMed  Google Scholar 

  8. Debont T, Daenens P, Tytgat J (1996) An improved fractionation and fast screening method for the identification of new and selective neurotoxins. Neurosci Res 24:201–206

    Article  CAS  PubMed  Google Scholar 

  9. Garbers DL (1989) Molecular basis of fertilisation. Annu Rev Biochem 58:719–742

    Article  CAS  PubMed  Google Scholar 

  10. Gauss R, Seifert R, Kaupp UB (1998) Molecular identification of a hyperpolarization-activated channel in sea urchin sperm. Nature 393:583–587

    CAS  PubMed  Google Scholar 

  11. Heginbotham L, Zhe L, Abramson T, MacKinnon R (1994) Mutations in the K+ channel signature sequence. Biophys J 66:1061–1067

    CAS  PubMed  Google Scholar 

  12. Henrikson CA, Xue T, Dong P, Sang D, Marban E Li RA (2003) Identification of a surface charged residue in the S3-S4 linker of the pacemaker (HCN) channel that influences activation gating. J Biol Chem 278:13647–13654

    Article  CAS  PubMed  Google Scholar 

  13. Jiang Y, Ruta V, Chen J, Lee A, MacKinnon R (2003) The principle of gating charge movement in a voltage-dependent K+ channel. Nature 423:42–48

    Article  CAS  PubMed  Google Scholar 

  14. Jiang Y, Lee A, Chen J, Ruta V, Cadene M, Chait BT, MacKinnon R (2003) X-ray structure of a voltage-dependent K+ channel. Nature 423:23–41

    PubMed  Google Scholar 

  15. Kaupp UB, Seifert R (2001) Molecular diversity of pacemaker ion channels. Annu Rev Physiol 63:235–257

    Google Scholar 

  16. Lee HC, Johnson C, Epel D (1983) Changes in internal pH associated with initiation of motility and acrosome reaction of sea urchin sperm. Dev Biol 95:31–45

    CAS  PubMed  Google Scholar 

  17. Ludwig A, Zong X, Jeglitsch M, Hofmann F, Biel M (1998) A family of hyperpolarization-activated mammalian cation channels. Nature 393:587–591

    CAS  PubMed  Google Scholar 

  18. Ludwig A, Zong X, Stieber J, Hullin R, Hofmann F, Biel M (1999) Two pacemaker channels from human heart with profoundly different activation kinetics. EMBO J 18:2323–2329

    CAS  PubMed  Google Scholar 

  19. Mannikko R, Elinder F, Larsson HP (2002) Voltage-sensing mechanism is conserved among ion channels gated by opposite voltages. Nature 419:837–841

    Article  CAS  PubMed  Google Scholar 

  20. Morisawa M (1994) Cell signalling mechanisms for sperm motility. Zool Sci 11:647–662

    CAS  PubMed  Google Scholar 

  21. Ren D, Navarro B, Perez G, Jackson AC, Hsu S, Shi Q, Tilly JL, Clapham DE (2001) A sperm ion channel required for sperm motility and male fertility. Nature 413:603–609

    Article  CAS  PubMed  Google Scholar 

  22. Stieber J, Thomer A, Much B, Schneider A, Biel M, Hofmann F (2003) Molecular basis for the different activation kinetics of the pacemaker channels HCN2 and HCN4. J Biol Chem 278:33672–33680

    Article  CAS  PubMed  Google Scholar 

  23. Vaca L, Stieber J, Zong X, Ludwig A, Hofmann F, Biel M (2000) Mutations in the S4 domain of a pacemaker channel alter its voltage dependence. FEBS Lett 479:35–40

    Article  CAS  PubMed  Google Scholar 

  24. Wainger BJ, DeGennaro M, Santoro B, Siegelbaum SA, Tibbs GR (2001) Molecular mechanism of cAMP modulation of HCN pacemaker channels. Nature 411:805–810

    CAS  PubMed  Google Scholar 

  25. Zong X, Stieber J, Ludwig A, Hofmann F, Biel M (2001) A single histidine residue determines the pH sensitivity of the pacemaker channel HCN2. J Biol Chem 276:6313–6319

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The clone of the SpHCN channel was kindly provided by Prof. U.B. Kaupp. This work was supported by the HFSP grant RGPOO54/2002.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vincent Torre.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mistrík, P., Torre, V. Histidine 518 in the S6-CNBD linker controls pH dependence and gating of HCN channel from sea-urchin sperm. Pflugers Arch - Eur J Physiol 448, 76–84 (2004). https://doi.org/10.1007/s00424-003-1228-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-003-1228-3

Keywords

Navigation