Skip to main content
Log in

Effect of dexamethasone on voltage-gated K+ channels in Jurkat T-lymphocytes

  • Cell and Molecular Physiology
  • Published:
Pflügers Archiv Aims and scope Submit manuscript

Abstract

The voltage-gated K+ channel Kv1.3 is an important regulator of lymphocyte function. Activation of lymphocytes is accompanied by stimulation, whereas CD95-induced apoptosis by inhibition, of Kv1.3. The channel serves to maintain cell membrane potential, a prerequisite for signalling through the Ca2+ release-activated Ca2+ channel ICRAC. As glucocorticoids are known to regulate lymphocyte function, the present study addressed the effect of dexamethasone on voltage-gated K+ channels in Jurkat T-lymphocytes. In whole-cell patch-clamp experiments current families evoked by 200-ms potential steps every 15 s from −70 mV to values from −120 to +100 mV revealed the functional expression of voltage-gated K+ channels. Pre-treatment of Jurkat T-lymphocytes for 2–3 h with 1 µM dexamethasone led to a significant decrease of voltage-gated K+ currents. Fura-2-fluorescence measurements showed that the readdition of Ca2+ to Ca2+-depleted cells led to a rapid increase of cytosolic Ca2+ activity. This increase of Ca2+ activity was blunted by both the K+ channel blocker margatoxin (10 nM) and 24 h pre-treatment with dexamethasone (1 µM). In conclusion, dexamethasone inhibits voltage-gated K+ channels in Jurkat T-lymphocytes, an effect impeding Ca2+ entry through ICRAC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1A, B.
Fig. 2.
Fig. 3.

Similar content being viewed by others

References

  1. Spencer RH, Chandy KG, Gutman GA (1993) Immunological identification of the Shaker-related Kv1.3 potassium channel protein in T and B lymphocytes, and detection of related proteins in files and yeast. Biochem Biophys Res Commun 191:201–206

    Article  CAS  PubMed  Google Scholar 

  2. Parekh AB, Penner R (1997) Store depletion and calcium influx. Physiol Rev 77:901–930

    CAS  PubMed  Google Scholar 

  3. Cantrell DA (1996) T cell antigen receptor signal transduction pathways. Cancer Surv 27:165–175

    CAS  PubMed  Google Scholar 

  4. Kojima H, Aizawa Y, Yanai Y, Nagaoka K, Takeuchi M, Ohta T, Ikegami H, Ikeda M, Kurimoto M (1999) An essential role for NF-kappa B in IL-18-induced IFN-gamma expression in KG-1 cells. J Immunol 162:5063–5069

    CAS  PubMed  Google Scholar 

  5. Sica A, Dorman L, Viggiano V, Cippitelli M, Ghosh P, Rice N, Young HA (1997) Interaction of NF-kappaB and NFAT with the interferon-gamma promoter. J Biol Chem 272:30412–30420

    Article  CAS  PubMed  Google Scholar 

  6. Lepple-Wienhues A, Belka C, Laun T, Jekle A, Walter B, Wieland U, Welz M, Heil L, Kun J, Busch G, Weller M, Bamberg M, Gulbins E, Lang F (1999) Stimulation of CD95 (Fas) blocks T lymphocyte calcium channels through sphingomyelinase and sphingolipids. Proc Natl Acad Sci USA 96:13795–13800

    CAS  PubMed  Google Scholar 

  7. Amigorena S, Choquet D, Teillaud JL, Korn H, Fridman WH (1990) Ion channel blockers inhibit B cell activation at a precise stage of the G1 phase of the cell cycle. Possible involvement of K+ channels. J Immunol 144:2038–2045

    CAS  PubMed  Google Scholar 

  8. Chandy KG, DeCoursey TE, Cahalan MD, McLaughlin C, Gupta S (1984) Voltage-gated potassium channels are required for human T lymphocyte activation. J Exp Med 160:369–385

    CAS  PubMed  Google Scholar 

  9. DeCoursey TE, Chandy KG, Gupta S, Cahalan MD (1984) Voltage-gated K+ channels in human T lymphocytes: a role in mitogenesis? Nature 307:465–468

  10. DeCoursey TE, Chandy KG, Gupta S, Cahalan MD (1987) Mitogen induction of ion channels in murine T lymphocytes. J Gen Physiol 89:405–420

    CAS  PubMed  Google Scholar 

  11. Leonard RJ, Garcia ML, Slaughter RS, Reuben JP (1992) Selective blockers of voltage-gated K+ channels depolarize human T lymphocytes: mechanism of the antiproliferative effect of charybdotoxin. Proc Natl Acad Sci USA 89:10094–10098

    CAS  PubMed  Google Scholar 

  12. Lewis RS, Cahalan MD (1990) Ion channels and signal transduction in lymphocytes. Annu Rev Physiol 52:415–430

    Article  CAS  PubMed  Google Scholar 

  13. Lewis RS, Cahalan MD (1995) Potassium and calcium channels in lymphocytes. Annu Rev Immunol 13:623–653

    CAS  PubMed  Google Scholar 

  14. Price M, Lee SC, Deutsch C (1989) Charybdotoxin inhibits proliferation and interleukin 2 production in human peripheral blood lymphocytes. Proc Natl Acad Sci USA 86:10171–10175

    CAS  PubMed  Google Scholar 

  15. Gulbins E, Szabo I, Baltzer K, Lang F (1997) Ceramide-induced inhibition of T lymphocyte voltage-gated potassium channel is mediated by tyrosine kinases. Proc Natl Acad Sci USA 94:7661–7666

    CAS  PubMed  Google Scholar 

  16. Szabo I, Gulbins E, Apfel H, Zhang X, Barth P, Busch AE, Schlottmann K, Pongs O, Lang F (1996) Tyrosine phosphorylation-dependent suppression of a voltage-gated K+ channel in T lymphocytes upon Fas stimulation. J Biol Chem 271:20465–20469

    CAS  PubMed  Google Scholar 

  17. Hoffman-Goetz L, Zajchowski S (1999) In vitro apoptosis of lymphocytes after exposure to levels of corticosterone observed following submaximal exercise. J Sports Med Phys Fitness 39:269–274

    CAS  PubMed  Google Scholar 

  18. Shimizu T, Kawamura T, Miyaji C, Oya H, Bannai M, Yamamoto S, Weerasinghe A, Halder RC, Watanabe H, Hatakeyama K, Abo T (2000) Resistance of extrathymic T cells to stress and the role of endogenous glucocorticoids in stress associated immunosuppression. Scand J Immunol 51:285–292

    Article  CAS  PubMed  Google Scholar 

  19. Cohen JJ, Duke RC (1984) Glucocorticoid activation of a calcium-dependent endonuclease in thymocyte nuclei leads to cell death. J Immunol 132:38–42

    CAS  PubMed  Google Scholar 

  20. Wyllie AH (1980) Glucocorticoid-induced thymocyte apoptosis is associated with endogenous endonuclease activation. Nature 284:555–556

    CAS  PubMed  Google Scholar 

  21. Kirsch AH, Mahmood AA, Endres J, Bohra L, Bonish B, Weber K, Fox DA (1999) Apoptosis of human T-cells: induction by glucocorticoids or surface receptor ligation in vitro and ex vivo. J Biol Regul Homeost Agents 13:80–89

    CAS  PubMed  Google Scholar 

  22. Bansal N, Houle A, Melnykovych G (1991) Apoptosis: mode of cell death induced in T cell leukemia lines by dexamethasone and other agents. FASEB J 5:211–216

    CAS  PubMed  Google Scholar 

  23. Baxter GD, Collins RJ, Harmon BV, Kumar S, Prentice RL, Smith PJ, Lavin MF (1989) Cell death by apoptosis in acute leukaemia. J Pathol 158:123–129

    CAS  PubMed  Google Scholar 

  24. El Helw LM, Lorigan PC, Robinson MH, Coleman RE, Hancock BW (2000) VEDex (vincristine, epirubicin dexamethasone): an effective and well tolerated palliative chemotherapy regimen for non-Hodgkin's lymphoma. Int J Oncol 16:777–782

    PubMed  Google Scholar 

  25. Gaynon PS, Carrel AL (1999) Glucocorticosteroid therapy in childhood acute lymphoblastic leukemia. Adv Exp Med Biol 457:593–605

    CAS  PubMed  Google Scholar 

  26. Josting A, Reiser M, Wickramanayake PD, Rueffer U, Draube A, Sohngen D, Tesch H, Wolf J, Diehl V, Engert A (2000) Dexamethasone, carmustine, etoposide, cytarabine, and melphalan (dexa-BEAM) followed by high-dose chemotherapy and stem cell rescue—a highly effective regimen for patients with refractory or relapsed indolent lymphoma. Leuk Lymphoma 37:115–123

    CAS  PubMed  Google Scholar 

  27. Garcia-Calvo M, Leonard RJ, Novick J, Stevens SP, Schmalhofer W, Kaczorowski GJ, Garcia ML (1993) Purification, characterization, and biosynthesis of margatoxin, a component of Centruroides margaritatus venom that selectively inhibits voltage-dependent potassium channels. J Biol Chem 268:18866–18874

    CAS  PubMed  Google Scholar 

  28. Leonard RJ, Garcia ML, Slaughter RS, Reuben JP (1992) Selective blockers of voltage-gated K+ channels depolarize human T lymphocytes: mechanism of the antiproliferative effect of charybdotoxin. Proc Natl Acad Sci USA 89:10094–10098

    CAS  PubMed  Google Scholar 

  29. Grynkiewicz G, Poenie M, Tsien RY (1985) A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem 260:3440–3450

    PubMed  Google Scholar 

  30. Webster MK, Goya L, Firestone GL (1993) Immediate-early transcriptional regulation and rapid mRNA turnover of a putative serine/threonine protein kinase. J Biol Chem 268:11482–11485

    CAS  PubMed  Google Scholar 

  31. Webster MK, Goya L, Ge Y, Maiyar AC, Firestone GL (1993) Characterization of sgk, a novel member of the serine/threonine protein kinase gene family which is transcriptionally induced by glucocorticoids and serum. Mol Cell Biol 13:2031–2040

    CAS  PubMed  Google Scholar 

  32. Firestone GL, Giampaolo JR, O'Keeffe BA (2003) Stimulus-dependent regulation of the serum and glucocorticoid inducible protein kinase (Sgk) transcription, subcellular localization and enzymatic activity. Cell Physiol Biochem 13:1–12

    Article  CAS  PubMed  Google Scholar 

  33. Gamper N, Fillon S, Huber SM, Feng Y, Kobayashi T, Cohen P, Lang F (2002) IGF-1 up-regulates K+ channels via PI3-kinase, PDK1 and SGK1. Pflugers Arch 443:625–634

    CAS  PubMed  Google Scholar 

  34. Gamper N, Fillon S, Feng Y, Friedrich B, Lang PA, Henke G, Huber SM, Kobayashi T, Cohen P, Lang F (2002) K+ channel activation by all three isoforms of serum- and glucocorticoid-dependent protein kinase SGK. Pflugers Arch 445:60–66

    Article  CAS  PubMed  Google Scholar 

  35. Lang F, Henke G, Embark HM, Waldegger S, Palmada M, Bohmer C, Vallon V (2003) Regulation of channels by the serum and glucocorticoid-inducible kinase—implications for transport, excitability and cell proliferation. Cell Physiol Biochem 13:41–50

    Article  CAS  PubMed  Google Scholar 

  36. Wärntges S, Friedrich B, Henke G, Duranton C, Lang PA, Waldegger S, Meyermann R, Kuhl D, Speckmann EJ, Obermuller N, Witzgall R, Mack AF, Wagner HJ, Wagner A, Broer S, Lang F (2002) Cerebral localization and regulation of the cell volume-sensitive serum- and glucocorticoid-dependent kinase SGK1. Pflugers Arch 443:617–624

    PubMed  Google Scholar 

  37. Lang F, Madlung J, Bock J, Lukewille U, Kaltenbach S, Lang KS, Belka C, Wagner CA, Lang HJ, Gulbins E, Lepple-Wienhues A (2000) Inhibition of Jurkat-T-lymphocyte Na+/H+-exchanger by CD95(Fas/Apo-1)-receptor stimulation. Pflugers Arch 440:902–907

    PubMed  Google Scholar 

  38. Szabo I, Lepple-Wienhues A, Kaba KN, Zoratti M, Gulbins E, Lang F (1998) Tyrosine kinase-dependent activation of a chloride channel in CD95-induced apoptosis in T lymphocytes. Proc Natl Acad Sci USA 95:6169–6174

    CAS  PubMed  Google Scholar 

  39. Lang F, Madlung J, Uhlemann AC, Risler T, Gulbins E (1998) Cellular taurine release triggered by stimulation of the Fas(CD95) receptor in Jurkat lymphocytes. Pflugers Arch 436:377–383

    Article  CAS  PubMed  Google Scholar 

  40. Lang F, Madlung J, Siemen D, Ellory C, Lepple-Wienhues A, Gulbins E (2000) The involvement of caspases in the CD95(Fas/Apo-1)- but not swelling-induced cellular taurine release from Jurkat T-lymphocytes. Pflugers Arch 440:93–99

    Article  CAS  PubMed  Google Scholar 

  41. Maeno E, Ishizaki Y, Kanaseki T, Hazama A, Okada Y (2000) Normotonic cell shrinkage because of disordered volume regulation is an early prerequisite to apoptosis. Proc Natl Acad Sci USA 97:9487–9492

    PubMed  Google Scholar 

  42. Moran J, Hernandez-Pech X, Merchant-Larios H, Pasantes-Morales H (2000) Release of taurine in apoptotic cerebellar granule neurons in culture. Pflugers Arch 439:271–277

    Article  PubMed  Google Scholar 

  43. Pasantes-Morales H, Franco R, Torres-Marquez ME, Hernandez-Fonseca K, Ortega A (2000) Amino acid osmolytes in regulatory volume decrease and isovolumetric regulation in brain cells: contribution and mechanisms. Cell Physiol Biochem 10:361–370

    PubMed  Google Scholar 

  44. Bock J, Szabo I, Jekle A, Gulbins E (2002) Actinomycin D-induced apoptosis involves the potassium channel Kv1.3. Biochem Biophys Res Commun 295:526–531

    Article  CAS  PubMed  Google Scholar 

  45. Beauvais F, Michel L, Dubertret L (1995) Human eosinophils in culture undergo a striking and rapid shrinkage during apoptosis. Role of K+ channels. J Leukoc Biol 57:851–855

    CAS  PubMed  Google Scholar 

  46. Benson RS, Heer S, Dive C, Watson AJ (1996) Characterization of cell volume loss in CEM-C7A cells during dexamethasone-induced apoptosis. Am J Physiol 270:C1190–C1203

    CAS  PubMed  Google Scholar 

  47. Bortner CD, Cidlowski JA (1999) Caspase independent/dependent regulation of K+, cell shrinkage, and mitochondrial membrane potential during lymphocyte apoptosis. J Biol Chem 274:21953–21962

    CAS  PubMed  Google Scholar 

  48. Ritter M, Wöll E (1996) Modification of cellular ion transport by the Ha-ras oncogene: Steps towards malignant transformation. Cell Physiol Biochem 6:245–270

    CAS  Google Scholar 

  49. Tanneur V, Ilgaz D, Duranton C, Fillon S, Gamper N, Huber SM, Lang F (2002) Time-dependent regulation of capacitative Ca2+ entry by IGF-1 in human embryonic kidney cells. Pflugers Arch 445:74–79

    Article  CAS  PubMed  Google Scholar 

  50. Deutsch C, Lee SC (1988) Cell volume regulation in lymphocytes. Renal Physiol Biochem 11:260–276

    CAS  PubMed  Google Scholar 

  51. Deutsch C, Chen LQ (1993) Heterologous expression of specific K+ channels in T lymphocytes: functional consequences for volume regulation. Proc Natl Acad Sci U S A 90:10036–10040

    CAS  PubMed  Google Scholar 

  52. Grinstein S, Smith JD (1990) Calcium-independent cell volume regulation in human lymphocytes. Inhibition by charybdotoxin. J Gen Physiol 95:97–120

    CAS  PubMed  Google Scholar 

  53. Lee SC, Price M, Prystowsky MB, Deutsch C (1988) Volume response of quiescent and interleukin 2-stimulated T-lymphocytes to hypotonicity. Am J Physiol 254:C286–C296

    CAS  PubMed  Google Scholar 

  54. Gamper N, Huber SM, Badawi K, Lang F (2000) Cell volume-sensitive sodium channels upregulated by glucocorticoids in U937 macrophages. Pflugers Arch 441:281–286

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the technical assistance of E. Faber. This work was supported by the Deutsche Forschungsgemeinschaft (La 315/4-4, Le 792/3-3), a grant of the Bundesministerium für Bildung, Wissenschaft, Forschung und Technologie (Fö. 01KS9602) and the Interdisziplinäres Zentrum für Klinische Forschung der Universität Tübingen (IZKF) (S. 05.00023.2/IIB9) and of the fortune program, Tübingen.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Florian Lang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lampert, A., Müller, M.M., Berchtold, S. et al. Effect of dexamethasone on voltage-gated K+ channels in Jurkat T-lymphocytes. Pflugers Arch - Eur J Physiol 447, 168–174 (2003). https://doi.org/10.1007/s00424-003-1148-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-003-1148-2

Keywords

Navigation