Skip to main content
Log in

A radiolabeled peptide ligand of the hERG channel, [125I]-BeKm-1

  • Ion Channels, Transporters
  • Published:
Pflügers Archiv Aims and scope Submit manuscript

Abstract

The wild-type scorpion toxin BeKm-1, which selectively blocks human ether-a-go-go related (hERG) channels, was radiolabeled with iodine at tyrosine 11. Both the mono- and di-iodinated derivatives were found to be biologically active. In electrophysiological patch-clamp recordings mono-[127I]-BeKm-1 had a concentration of half-maximal inhibition (IC50 value) of 27 nM, while wild-type BeKm-1 inhibited hERG channels with an IC50 value of 7 nM. Mono-[125I]-BeKm-1 was found to bind in a concentration-dependent manner and with picomolar affinity to hERG channel protein in purified membrane vesicles from transfected human embryonic kidney cells (HEK-293). Under optimized conditions the equilibrium dissociation constant (K d) values from saturation and kinetic binding analysis were 13 and 14 pM, respectively. Both the association and dissociation of [125I]-BeKm-1 were fast (association rate constant, k on=3.6×107 M−1s−1; dissociation rate constant, k off=0.005 s−1). Wild-type BeKm-1 displaced binding of [125I]-BeKm-1 with half-maximal inhibitory concentrations of 44 pM. In contrast, competition experiments with a BeKm-1 mutant BeKm-1-K18A, in which the toxin interaction site is disrupted, resulted in a drop in affinity by more than 300-fold as compared to the wild-type toxin. Iberiotoxin and apamin, peptide inhibitors of Ca2+-activated K+-channels, had no effect on [125I]-BeKm-1 binding. Adding the classical rapid delayed rectifier current (I Kr) blocker E-4031 reduced binding of [125I]-BeKm-1 to the hERG channel to an IC50 of 7 nM. In autoradiographic studies on rat hearts, binding of [125I]-BeKm-1 was dose-dependent and could partially be displaced by the addition of excess amounts of non-radioactive BeKm-1. The density of the radioactive signal was equally distributed in the myocardium of both the ventricle and atria indicating a homogenous expression of hERG channels throughout the heart.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4A–C.
Fig. 5A, B.
Fig. 6A–C.
Fig. 7A–C.
Fig. 8.

Similar content being viewed by others

References

  1. Abbott GW, Sesti F, Splawski I, Buck ME, Lehmann MH, Timothy KW, Keating MT, Goldstein SA (1999) MiRP1 forms IKr potassium channels with HERG and is associated with cardiac arrhythmia. Cell 97:175–187

    CAS  PubMed  Google Scholar 

  2. Bryant SM, Wan X, Shipsey SJ, Hart G (1998) Regional differences in the delayed rectifier current (IKr and IKs) contribute to the differences in action potential duration in basal left ventricular myocytes in guinea-pig. Cardiovasc Res 40:322–331

    Article  CAS  PubMed  Google Scholar 

  3. Filippov AK, Kozlov SA, Pluzhnikov KA, Grishin EV, Brown DA (1996) M-type K+ current inhibition by a toxin from the scorpion Buthus eupeus. FEBS Lett 384:277–280

    Article  CAS  PubMed  Google Scholar 

  4. Franco D, Demolombe S, Kupershmidt S, Dumaine R, Dominguez JN, Roden D, Antzelevitch C, Escande D, Moorman AF (2001) Divergent expression of delayed rectifier K(+) channel subunits during mouse heart development. Cardiovasc Res 52:65–75

    Article  CAS  PubMed  Google Scholar 

  5. Gurrola GB, Rosati B, Rocchetti M, Pimienta G, Zaza A, Arcangeli A, Olivotto M, Possani LD, Wanke E (1999) A toxin to nervous, cardiac, and endocrine ERG K+ channels isolated from Centruroides noxius scorpion venom. FASEB J 13:953–962

    CAS  PubMed  Google Scholar 

  6. Helms LMH, Felix JP, Bugianesi RM, Garcia ML, Stevens S, Leonard RJ, Knaus HG, Koch RO, Wanner SG, Kaczorowski GJ, Slaughter R (1997) Margatoxin binds to a homomultimer of Kv1.3 channels in Jurkat Cells. Comparison with Kv1.3 expressed in CHO Cells. Biochemistry 36:3737–3744

    Article  CAS  PubMed  Google Scholar 

  7. Ho W-K, Kim I, Lee CO, Earm YE (1998) Voltage-dependent blockade of HERG channels expressed in Xenopus oocytes by external Ca2+ and Mg2+. J Physiol (Lond) 507:631–638

    Google Scholar 

  8. Knaus HG, Koch RO, Eberhart A, Kaczorowski GJ, Garcia ML, Slaughter RS (1995) [125I]-Margatoxin, an extraordinarily high affinity ligand for voltage-gated potassium channels in mammalian brain. Biochemistry 34:13627–13634

    CAS  PubMed  Google Scholar 

  9. Korolkova YV, Bocharov EV, Angelo K, Maslennikov IV, Grinenko OV, Lipkin AV, Nosyreva ED, Pluzhnikov KA, Olesen SP, Arseniev AS, Eugene VG (2002) New binding site on common molecular scaffold provides hERG channel specificity of scorpion toxin BeKm-1. J Biol Chem 277:43104–43109

    Article  CAS  PubMed  Google Scholar 

  10. Korolkova YV, Kozlov SA, Lipkin AV, Pluzhnikov KA, Hadley JK, Filippov AK, Brown DA, Angelo K, Strobaek D, Jespersen T, Olesen SP, Jensen BS, Grishin EV (2001) An ERG channel inhibitor from the scorpion Buthus eupeus. J Biol Chem 276:9868–9876

    Article  CAS  PubMed  Google Scholar 

  11. Koschak A, Bugianesi RM, Mitterdorfer J, Kaczorowski GJ, Garcia ML, Knaus HG (1998) Subunit composition of brain voltage-gated potassium channels determined by hongotoxin-1, a novel peptide derived from Centruroides limbatus venom. J Biol Chem 273:2639–2644

    CAS  PubMed  Google Scholar 

  12. Koschak A, Koch RO, Liu J, Kaczorowski GJ, Reinhart PH, Garcia ML, Knaus HG (1997) [125I]Iberiotoxin-D19Y/Y36F, the first selective, high specific activity radioligand for high-conductance calcium-activated potassium channels. Biochemistry 36:1943–1952

    Article  CAS  PubMed  Google Scholar 

  13. Legros C, Pollmann V, Knaus HG, Farrell AM, Darbon H, Bougis PE, Martin-Eauclaire MF, Pongs O (2000) Generating a high affinity scorpion toxin receptor in KcsA-Kv1.3 chimeric potassium channels. J Biol Chem 275:16918–16924

    Article  CAS  PubMed  Google Scholar 

  14. Meves H, Schwarz JR, Wulfsen I (1999) Separation of M-like current and ERG current in NG108–15 cells. Br J Pharmacol 127:1213–1223

    CAS  PubMed  Google Scholar 

  15. Mullins FM, Stepanovic SZ, Desai RR, George AL, Balser JR (2002) Extracellular sodium interacts with the HERG channel at an outer pore site. J Gen Physiol 120:517–537

    Article  CAS  PubMed  Google Scholar 

  16. Pardo-Lopez L, Zhang M, Liu J, Jiang M, Possani LD, Tseng GN (2002) Mapping the binding site of a human ether-a-go-go-related gene-specific peptide toxin (ErgTx) to the channel's outer vestibule. J Biol Chem 277:16403–16411

    Article  CAS  PubMed  Google Scholar 

  17. Pond AL, Nerbonne JM (2001) ERG proteins and functional cardiac I(Kr) channels in rat, mouse, and human heart. Trends Cardiovasc Med 11:286–294

    Article  CAS  PubMed  Google Scholar 

  18. Pond AL, Scheve BK, Benedict AT, Petrecca K, Van Wagoner DR, Shrier A, Nerbonne JM (2000) Expression of distinct ERG proteins in rat, mouse, and human heart. Relation to functional I(Kr) channels. J Biol Chem 275:5997–6006

    Article  CAS  PubMed  Google Scholar 

  19. Ponti FD, Poluzzi E, Cavalli A, Recanatini M, Montanaro N (2002) Safety of non-antiarrhythmic drugs that prolong the QT interval or induce torsade de pointes: an overview. Drug Safety 25:263–286

    PubMed  Google Scholar 

  20. Roche O, Trube G, Zuegge J, Pflimlin P, Alanine A, Schneider G (2002) A virtual screening method for prediction of the HERG potassium channel liability of compound libraries. Chem Biochem 3:455–459

    Article  CAS  Google Scholar 

  21. Sanguinetti MC, Jurkiewicz NK, Scott A, Siegl PK (1991) Isoproterenol antagonizes prolongation of refractory period by the class III antiarrhythmic agent E-4031 in guinea pig myocytes. Mechanism of action. Circ Res 68:77–84

    CAS  PubMed  Google Scholar 

  22. Selyanko AA, Hadley JK, Wood IC, Abogadie FC, Delmas P, Buckley NJ, London B, Brown DA (1999) Two types of K(+) channel subunit, Erg1 and KCNQ2/3, contribute to the M-like current in a mammalian neuronal cell. J Neurosci 19:7742–7756

    CAS  PubMed  Google Scholar 

  23. Strobaek D, Jorgensen TD, Christophersen P, Ahring PK, Olesen SP (2000) Pharmacological characterization of small-conductance Ca(2+)-activated K(+) channels stably expressed in HEK 293 cells. Br J Pharmacol 129:991–999

    CAS  PubMed  Google Scholar 

  24. Wymore RS, Gintant GA, Wymore RT, Dixon JE, McKinnon D, Cohen IS (1997) Tissue and species distribution of mRNA for the IKr-like K+ channel, erg. Circ Res 80:261–268

    CAS  PubMed  Google Scholar 

  25. Zhang M, Korolkova YV, Liu J, Jiang M, Grishin EV, Tseng G-N (2003) BeKm-1 is a HERG-specific toxin that shares the structure with ChTx but the mechanism of action with ErgTx1. Biophys J 84:3022–3036

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Danish Heart Foundation and Russian Foundation of Basic Research. Thank you to Bernt Pragl for help with the iodination.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kamilla Angelo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Angelo, K., Korolkova, Y.V., Grunnet, M. et al. A radiolabeled peptide ligand of the hERG channel, [125I]-BeKm-1. Pflugers Arch - Eur J Physiol 447, 55–63 (2003). https://doi.org/10.1007/s00424-003-1125-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-003-1125-9

Keywords

Navigation