Skip to main content

Advertisement

Log in

NH4 + conductance in Xenopus laevis oocytes. III. Effect of NH3

  • Epithelial Transport
  • Published:
Pflügers Archiv Aims and scope Submit manuscript

Abstract

Exposure of Xenopus laevis oocytes to NH4Cl caused intracellular acidification, cell membrane depolarization and the generation of an inward current. To determine the contribution of uncharged NH3 and positively charged NH4 +, the NH4Cl-induced inward current was measured in the presence of increasing [NH3] at constant [NH4Cl] (10 mM) or increasing [NH4Cl] at constant [NH3] (0.045 mM) with pH varying in both cases. At −70 mV, the NH4Cl-induced current was barely detectable at pH 6.5, 0.01 mM NH3, but increased successively at pH 7.5, 0.1 mM NH3 and pH 8.5, 1 mM NH3. In contrast, NH4Cl-associated currents were independent of changes of the [NH4Cl] at constant [NH3] and variable pH. Similar results with respect to acidification, depolarization and inward current in response to concentration and pH changes were obtained with trimethylamine HCl. Increasing concentrations of the weak acid propionate led to a reduction of the NH4Cl-induced current. These data suggest that NH3 entry may induce local alkalinization that, in turn, may trigger the opening of a conductance for NH4 + or trimethylamine-H+ entry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2A–D.
Fig. 3A–D.
Fig. 4.
Fig. 5.

Similar content being viewed by others

References

  1. Amlal H, Paillard M, Bichara M (1994) Cl-dependent NH4 + transport mechanisms in medullary thick ascending limb cells. Am J Physiol 267:C1607–C1615

    CAS  PubMed  Google Scholar 

  2. Amlal H, Paillard M, Bichara M (1994) NH4 + transport pathways in cells of medullary thick ascending limb of rat kidney. J Biol Chem 269:21962–21971

    CAS  PubMed  Google Scholar 

  3. Bleich M, Köttgen M, Schlatter E, Greger R (1995) Effect of NH3/NH4 + on cytosolic pH and the K+ channels of freshly isolated cells from the thick ascending limb of Henle's loop. Pflugers Arch 429:345–354

    CAS  PubMed  Google Scholar 

  4. Boron WF, De Weer P (1976) Intracellular pH transients in squid giant axons caused by CO2, NH3, and metabolic inhibitors. J Gen Physiol 67:91–112

    CAS  PubMed  Google Scholar 

  5. Burckhardt BC, Burckhardt G (1997) NH4 + conductance in Xenopus laevis oocytes. I. Basic observations. Pflugers Arch 434:306–312

    Article  CAS  PubMed  Google Scholar 

  6. Burckhardt BC, Frömter E (1992) Pathways of NH3/NH4 + permeation across Xenopus laevis oocyte cell membrane. Pflugers Arch 420:83–86

    CAS  PubMed  Google Scholar 

  7. Burckhardt BC, Thelen P (1995) Effect of primary, secondary and tertiary amines on membrane potential and intracellular pH in Xenopus laevis oocytes. Pflugers Arch 429:306–312

    CAS  PubMed  Google Scholar 

  8. Burckhardt BC, Kroll B, Frömter E (1992) Proton transport mechanism in the cell membrane of Xenopus laevis oocytes. Pflugers Arch 420:78–82

    CAS  PubMed  Google Scholar 

  9. Busch AE, Kopp HG, Waldegger S, Samarzija I, Süßbrich H, Raber G, Kunzelmann K, Ruppersberg JP, Lang F (1996) Effect of isosorbiddinitrate on exogenously expressed slowly activating K+ channels and endogenous K+ channels in Xenopus oocytes. J Physiol (Lond) 491:735–741

    Google Scholar 

  10. Cougnon M, Bouyer P, Hulin P, Anagnostopoulos T, Planelles G (1996) Further investigation of diffusive properties and NH4 + pathways in Xenopus laevis oocyte cell membrane. Pflugers Arch 431:658–667

    Article  CAS  PubMed  Google Scholar 

  11. Cougnon M, Bouyer P, Jaisser F, Edelman A, Planelles G (1999) Ammonium transport by the colonic H+-K+-ATPase expressed in Xenopus laevis oocytes. Am J Physiol 277:C280–C287

    CAS  PubMed  Google Scholar 

  12. Cougnon M, Benammou S, Brouillard F, Hulin P, Planelles G (2002) Effect of reactive oxygen species on NH4 + permeation in Xenopus laevis oocytes. Am J Physiol 282:C1445–C1453

    CAS  Google Scholar 

  13. Good DW (1994) Ammonium transport by the thick ascending limb of Henle's loop. Annu Rev Physiol 56:623–647

    CAS  PubMed  Google Scholar 

  14. Good DW, Watt BA III (1996) Functional roles of apical Na+/H+ exchange in rat medullary thick ascending limb. Am J Physiol 270:F691–F699

    CAS  PubMed  Google Scholar 

  15. Humphreys BD, Chernova MN, Jiang L, Zhang Y, Alper AL (1997) NH4Cl activates AE2 anion exchanger in Xenopus laevis oocytes at acidic pHi. Am J Physiol 272:C1332–C1240

    Google Scholar 

  16. Kikeri D, Sun A, Zeidel ML, Hebert SC (1989) Cell membranes impermeable to NH3. Nature 339:478–480

    CAS  PubMed  Google Scholar 

  17. Kikeri D, Sun A, Zeidel ML, Hebert SC (1992) Cellular NH4 +/K+ transport pathways in mouse medullary thick ascending limb of Henle. J Gen Physiol 99:435–461

    CAS  PubMed  Google Scholar 

  18. Laamarti MA, Lapointe J-Y (1997) Determination of NH4 +/NH3 fluxes across apical membrane of macula densa cells: a quantitative analysis. Am J Physiol 273:F817–F824

    CAS  PubMed  Google Scholar 

  19. Ludwig A, Burckhardt G, Burckhardt BC (1999) NH4 + conductance in Xenopus laevis oocytes. II. Effect of hypoosmolality. Pflugers Arch 437:484–490

    Article  CAS  PubMed  Google Scholar 

  20. Nakhoul NL, Hering-Smith KS, Abdulnour-Nakhoul SM, Hamm LL (2001) Transport of NH3/NH4 + in oocytes expressing aquaporin-1. Am J Physiol 281:F255–F263

    CAS  Google Scholar 

  21. Ramirez M, Fernandez R, Malnic G (1999) Permeation of NH3/NH4 + and cell pH in colonic crypts of the rat. Pflugers Arch 438:508–515

    CAS  PubMed  Google Scholar 

  22. Sasaki S, Ishibashi K, Nagai T, Marumo F (1992) Regulation mechanisms of intracellular pH of Xenopus laevis oocytes. Biochim Biophys Acta 1137:45–51

    Article  CAS  PubMed  Google Scholar 

  23. Singh SK, Binder HJ, Geibel JP, Boron WF (1995) An apical permeability barrier to NH3/NH4 + in isolated, perfused colonic crypts. Proc Natl Acad Sci USA 92:11573–11577

    CAS  PubMed  Google Scholar 

  24. Völkl H, Lang F (1991) Electrophysiology of ammonia transport in renal straight proximal tubules. Kidney Int 40:1082–1089

    PubMed  Google Scholar 

  25. Wagner CA, Friedrich B, Setiwan I, Lang F, Bröer S (2000) The use of Xenopus laevis oocytes for the functional characterization of heterologously expressed membrane proteins. Cellular Physiol Biochem 10:1–12

    Article  CAS  Google Scholar 

  26. Waisbren SJ, Geibel JP, Modlin IM, Boron WF (1994) Unusual permeability of gastric gland cells. Nature 368:332–335

    CAS  PubMed  Google Scholar 

  27. Weber WM (1999) Endogenous ion channels in oocytes of Xenopus laevis: recent developments. J Membr Biol 170:1–12

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Mrs. I. Markmann for expert technical assistance and Mrs. E. Thelen for the artwork.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Birgitta Christina Burckhardt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boldt, M., Burckhardt, G. & Burckhardt, B.C. NH4 + conductance in Xenopus laevis oocytes. III. Effect of NH3 . Pflugers Arch - Eur J Physiol 446, 652–657 (2003). https://doi.org/10.1007/s00424-003-1122-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-003-1122-z

Keywords

Navigation