Pflügers Archiv

, Volume 447, Issue 5, pp 580–593 | Cite as

Molecular physiology of cation-coupled Cl cotransport: the SLC12 family

  • Steven C. Hebert
  • David B. Mount
  • Gerardo Gamba
The ABC of Solute Carriers Guest Editor: Matthias A. Hediger

Abstract

The electroneutral cation-chloride-coupled cotransporter gene family (SLC12) was identified initially at the molecular level in fish and then in mammals. This nine-member gene family encompasses two major branches, one including two bumetanide-sensitive Na+-K+-2Cl cotransporters and the thiazide-sensitive Na+:Cl cotransporter. Two of the genes in this branch (SLC12A1 and SLC12A3), exhibit kidney-specific expression and function in renal salt reabsorption, whereas the third gene (SLC12A2) is expressed ubiquitously and plays a key role in epithelial salt secretion and cell volume regulation. The functional characterization of both alternatively-spliced mammalian Na+-K+-2Cl cotransporter isoforms and orthologs from distantly related species has generated important structure-function data. The second branch includes four genes (SLC12A47) encoding electroneutral K+-Cl cotransporters. The relative expression level of the neuron-specific SLC12A5 and the Na+-K+-2Cl cotransporter SLC12A2 appears to determine whether neurons respond to GABA with a depolarizing, excitatory response or with a hyperpolarizing, inhibitory response. The four K+-Cl cotransporter genes are co-expressed to varying degrees in most tissues, with further roles in cell volume regulation, transepithelial salt transport, hearing, and function of the peripheral nervous system. The transported substrates of the remaining two SLC12 family members, SLC12A8 and SLC12A9, are as yet unknown. Inactivating mutations in three members of the SLC12 gene family result in Mendelian disease; Bartter syndrome type I in the case of SLC12A1, Gitelman syndrome for SLC12A3, and peripheral neuropathy in the case of SLC12A6. In addition, knockout mice for many members of this family have generated important new information regarding their respective physiological roles.

Keywords

Thiazide Bumetanide Bartter's syndrome Gitelman's syndrome Corpus callosum Peripheral neuropathy Epilepsy GABA (γ-aminobutyric acid) 

References

  1. 1.
    al Abdel YK, Badawi MH, Yaeesh SA, Habib YQ, al Khuffash FA, al Ghanim MM, al Najidi AK (1999) Bartter's syndrome in Arabic children: review of 13 cases. Pediatr Int 41:299–303CrossRefPubMedGoogle Scholar
  2. 2.
    Attmane-Elakeb A, Mount DB, Sibella V, Vernimmen C, Hebert SC, Bichara M (1998) Stimulation by in vitro acidosis of expression of rBSC-1, the Na+-K+(NH4 +)-2Cl cotransporter of the rat medullary thick ascending limb. J Biol Chem 273:33681–33691PubMedGoogle Scholar
  3. 3.
    Attmane-Elakeb A, Sibella V, Vernimmen C, Belenfant X, Hebert SC, Bichara M (2000) Regulation by glucocorticoids of expression and activity of rBSC1, the Na+-K+(NH4 +)-2Cl cotransporter of medullary thick ascending limb. J Biol Chem 275:33548–33553CrossRefPubMedGoogle Scholar
  4. 4.
    Bachmann S, Velazquez H, Obermuller N, Reilly RF, Moser D, Ellison DH (1995) Expression of the thiazide-sensitive Na-Cl cotransporter by rabbit distal convoluted tubule cells. J Clin Invest 96:2510–2514PubMedGoogle Scholar
  5. 5.
    Barry ELR, Gesek FA, Kaplan MR, Hebert SC, Friedman PA (1997) Expression of the Na-Cl cotransporter in osteoblast-like cells. Effects of thiazide diuretics. Am J Physiol 41:C109–C116Google Scholar
  6. 6.
    Bauman K, Holzgreve H, Kolb F, Peters R, Rumrich G, Ullrich KJ (1966) Unidirektionale Flusse für24Na, 42K, 45Ca, 38Cl, 82Br, and 131I im proximalen Konvolut der Rattenniere (abstract). Pflugers Arch 289:R77Google Scholar
  7. 7.
    Beaumont K, Vaughn DA, Fanestil DD (1988) Thiazide diuretic drug receptors in rat kidney: identification with [3H]metolazone. Proc Natl Acad Sci USA 85:2311–2314PubMedGoogle Scholar
  8. 8.
    Bettinelli A, Ciarmatori S, Cesareo L, Tedeschi S, Ruffa G, Appiani AC, Rosini A, Grumieri G, Mercuri B, Sacco M, Leozappa G, Binda S, Cecconi M, Navone C, Curcio C, Syren ML, Casari G (2000) Phenotypic variability in Bartter syndrome type I. Pediatr Nephrol 14:940–945CrossRefPubMedGoogle Scholar
  9. 9.
    Bickel CA, Verbalis JG, Knepper MA, Ecelbarger CA (2001) Increased renal Na-K-ATPase, NCC, and beta-ENaC abundance in obese Zucker rats. Am J Physiol 281:F639–F648Google Scholar
  10. 10.
    Biner HL, Arpin-Bott MP, Loffing J, Wang X, Knepper M, Hebert SC, Kaissling B (2002) Human cortical distal nephron: distribution of electrolyte and water transport pathways. J Am Soc Nephrol 13:836–847PubMedGoogle Scholar
  11. 11.
    Bize I, Guvenc B, Buchbinder G, Brugnara C (2000) Stimulation of human erythrocyte K-Cl cotransport and protein phosphatase type 2A by N-ethylmaleimide: role of intracellular Mg++. J Membr Biol 177:159–168PubMedGoogle Scholar
  12. 12.
    Boettger T, Hubner CA, Maier H, Rust MB, Beck FX, Jentsch TJ (2002) Deafness and renal tubular acidosis in mice lacking the K-Cl co-transporter KCC4. Nature 416:874–878CrossRefPubMedGoogle Scholar
  13. 13.
    Bostanjoglo M, Reeves WB, Reilly RF, Velazquez H, Robertson N, Litwack G, Morsing P, Dorup J, Bachmann S, Ellison DH, Bostonjoglo M (1998) 11-Beta-hydroxysteroid dehydrogenase, mineralocorticoid receptor, and thiazide-sensitive Na-Cl cotransporter expression by distal tubules. J Am Soc Nephrol 9:1347–1358PubMedGoogle Scholar
  14. 14.
    Burg MB, Green N (1973) Function of the thick ascending limb of Henle's loop. Am J Physiol 224:659–668PubMedGoogle Scholar
  15. 15.
    Caillard O, Ben Ari Y, Gaiarsa JL (1999) Long-term potentiation of GABAergic synaptic transmission in neonatal rat hippocampus. J Physiol (Lond) 518:109–119Google Scholar
  16. 16.
    Caron L, Rousseau F, Gagnon E, Isenring P (2000) Cloning and functional characterization of a cation-Cl cotransporter-interacting protein. J Biol Chem 275:32027–32036CrossRefPubMedGoogle Scholar
  17. 17.
    Clayton GH, Owens GC, Wolff JS, Smith RL (1998) Ontogeny of cation-Cl cotransporter expression in rat neocortex. Brain Res Dev Brain Res 109:281–292CrossRefPubMedGoogle Scholar
  18. 18.
    Cossins AR, Gibson JS (1997) Volume-sensitive transport systems and volume homeostasis in vertebrate red blood cells. J Exp Biol 200:343–352PubMedGoogle Scholar
  19. 19.
    Costanzo LS (1985) Localization of diuretic action in microperfused rat distal tubules: Ca and Na transport. Am J Physiol 248:F527–F535PubMedGoogle Scholar
  20. 20.
    Darman RB, Flemmer A, Forbush B (2001) Modulation of ion transport by direct targeting of protein phosphatase type 1 to the Na-K-Cl cotransporter. J Biol Chem 276:34359–34362CrossRefPubMedGoogle Scholar
  21. 21.
    De Fazio RA, Keros S, Quick MW, Hablitz JJ (2000) Potassium-coupled chloride cotransport controls intracellular chloride in rat neocortical pyramidal neurons. J Neurosci 20:8069–8076PubMedGoogle Scholar
  22. 22.
    Delpire E (2000) Cation-chloride cotransporters in neuronal communication. News Physiol Sci 15:309–312PubMedGoogle Scholar
  23. 23.
    Delpire E, Lu J, England R, Dull C, Thorne T (1999) Deafness and imbalance associated with inactivation of the secretory Na-K-2Cl co-transporter. Nat Genet 22:192–195CrossRefPubMedGoogle Scholar
  24. 24.
    Delpire E, Rauchman MI, Beier DR, Hebert SC, Gullans SR (1994) Molecular cloning and chromosomal localization of a putative basolateral Na+-K+-2Cl cotransporter from mouse inner medullary collecting duct (mIMCD-3) cells. J Biol Chem 269:25677–25683PubMedGoogle Scholar
  25. 25.
    Dunham PB, Stewart GW, Ellory JC (1980) Chloride-activated passive potassium transport in human erythrocytes. Proc Natl Acad Sci USA 77:1711–1715PubMedGoogle Scholar
  26. 26.
    Ecelbarger CA, Knepper MA, Verbalis JG (2001) Increased abundance of distal sodium transporters in rat kidney during vasopressin escape. J Am Soc Nephrol 12:207–217PubMedGoogle Scholar
  27. 27.
    Ecelbarger CA, Knepper MA, Verbalis JG (2001) Increased abundance of distal sodium transporters in rat kidney during vasopressin escape. J Am Soc Nephrol 12:207–217PubMedGoogle Scholar
  28. 28.
    Elkjaer ML, Kwon TH, Wang W, Nielsen J, Knepper MA, Frokiaer J, Nielsen S (2002) Altered expression of renal NHE3, TSC, BSC-1, and ENaC subunits in potassium-depleted rats. Am J Physiol 283:F1376–F1388Google Scholar
  29. 29.
    Ellison DH, Velazquez H, Wright FS (1987) Thiazide-sensitive sodium chloride cotransport in early distal tubule. Am J Physiol 253:F546–F554PubMedGoogle Scholar
  30. 30.
    Evans RL, Park K, Turner RJ, Watson GE, Nguyen HV, Dennett MR, Hand AR, Flagella M, Shull GE, Melvin JE (2000) Severe impairment of salivation in Na+/K+/2Cl cotransporter (NKCC1)-deficient mice. J Biol Chem 275:26720–26726PubMedGoogle Scholar
  31. 31.
    Flagella M, Clarke LL, Miller ML, Erway LC, Giannella RA, Andringa A, Gawenis LR, Kramer J, Duffy JJ, Doetschman T, Lorenz JN, Yamoah EN, Cardell EL, Shull GE (1999) Mice lacking the basolateral Na-K-2Cl cotransporter have impaired epithelial chloride secretion and are profoundly deaf. J Biol Chem 274:26946–26955PubMedGoogle Scholar
  32. 32.
    Fukuda A, Muramatsu K, Okabe A, Shimano Y, Hida H, Fujimoto I, Nishino H (1998) Changes in intracellular Ca2+ induced by GABAA receptor activation and reduction in Cl gradient in neonatal rat neocortex. J Neurophysiol 79:439–446PubMedGoogle Scholar
  33. 33.
    Gagnon E, Forbush B, Caron L, Isenring P (2003) Functional comparison of renal Na-K-Cl cotransporters between distant species. Am J Physiol 284:C365–C370Google Scholar
  34. 34.
    Gamba G, Miyanoshita A, Lombardi M, Lytton J, Lee W-S, Hediger MA, Hebert SC (1994) Molecular cloning, primary structure and characterization of two members of the mammalian electroneutral sodium-(potassium)-chloride cotransporter family expressed in kidney. J Biol Chem 269:17713–17722PubMedGoogle Scholar
  35. 35.
    Gamba G, Saltzberg SN, Lombardi M, Miyanoshita A, Lytton J, Hediger MA, Brenner BM, Hebert SC (1993) Primary structure and functional expression of a cDNA encoding the thiazide-sensitive, electroneutral sodium-chloride cotransporter. Proc Natl Acad Sci USA 90:2749–2753PubMedGoogle Scholar
  36. 36.
    Ganguly K, Schinder AF, Wong ST, Poo M (2001) GABA itself promotes the developmental switch of neuronal GABAergic responses from excitation to inhibition. Cell 105:521–532CrossRefPubMedGoogle Scholar
  37. 37.
    Geck P, Pietrzyk C, Burckhardt B-C, Pfeiffer B, Heinz E (1980) Electrically silent cotransport of Na, K and Cl in Ehrlich cells. Biochem Biophys Acta 600:432–447CrossRefPubMedGoogle Scholar
  38. 38.
    Gerelsaikhan T, Turner RJ (2000) Transmembrane topology of the secretory Na+-K+-2Cl cotransporter NKCC1 studied by in vitro translation. J Biol Chem 275:40471–40477CrossRefPubMedGoogle Scholar
  39. 39.
    Gillen CM, Brill S, Payne JA, Forbush B III (1996) Molecular cloning and functional expression of the K-Cl cotransporter from rabbit, rat, and human. A new member of the cation-chloride cotransporter family. J Biol Chem 271:16237–16244CrossRefPubMedGoogle Scholar
  40. 40.
    Gillen CM, Forbush B III (1999) Functional interaction of the K-Cl cotransporter (KCC1) with the Na-K-Cl cotransporter in HEK-293 cells. Am J Physiol 276_C328–C336Google Scholar
  41. 41.
    Gimenez I, Isenring P, Forbush B (2002) Spatially distributed alternative splice variants of the renal Na-K-Cl cotransporter exhibit dramatically different affinities for the transported ions. J Biol Chem 277:8767–8770PubMedGoogle Scholar
  42. 42.
    Greger R, Schlatter E (1981) Presence of luminal K+, a prerequisite for active NaCl transport in the cortical thick ascending limb of Henle's loop of rabbit kidney. Pflugers Arch 392:92–94PubMedGoogle Scholar
  43. 43.
    Greger R, Schlatter E, Lang F (1983) Evidence for electroneutral sodium chloride cotransport in the cortical thick ascending limb of Henle's loop of rabbit kidney. Pflugers Arch 396:308–314PubMedGoogle Scholar
  44. 44.
    Gulyas AI, Sik A, Payne JA, Kaila K, Freund TF (2001) The KCl cotransporter, KCC2, is highly expressed in the vicinity of excitatory synapses in the rat hippocampus. Eur J Neurosci 13:2205–2217CrossRefPubMedGoogle Scholar
  45. 45.
    Haas M, Forbush B III (2000) The Na-K-Cl cotransporter of secretory epithelia. Annu Rev Physiol 62:515–534PubMedGoogle Scholar
  46. 46.
    Haas M, McManus TJ (1983) Bumetanide inhibits (Na+K+2Cl) co-transport at a chloride site. Am J Physiol 245:C235–C240PubMedGoogle Scholar
  47. 47.
    Hebert SC, Culpepper RM, Andreoli TE (1981) NaCl transport in mouse medullary thick ascending limbs II. ADH enhancement of transcellular NaCl cotransport; origin of the transepithelial voltage. Am J Physiol 241:F432–F442PubMedGoogle Scholar
  48. 48.
    Hebert SC, Culpepper RM, Andreoli TE (1981) NaCl transport in mouse medullary thick ascending limbs. I Functional nephron heterogeneity and ADH-stimulated NaCl cotransport. Am J Physiol 241:F412–F431PubMedGoogle Scholar
  49. 49.
    Hebert SC, Gamba G (1995) Molecular cloning of the renal diuretic-sensitive electroneutral sodium-(potassium)-chloride cotransporters. Proc Assoc Am Physicians 107:76–80PubMedGoogle Scholar
  50. 50.
    Hewett D, Samuelsson L, Polding J, Enlund F, Smart D, Cantone K, See CG, Chadha S, Inerot A, Enerback C, Montgomery D, Christodolou C, Robinson P, Matthews P, Plumpton M, Wahlstrom J, Swanbeck G, Martinsson T, Roses A, Riley J, Purvis I (2002) Identification of a psoriasis susceptibility candidate gene by linkage disequilibrium mapping with a localized single nucleotide polymorphism map. Genomics 79:305–314CrossRefPubMedGoogle Scholar
  51. 51.
    Hiki K, D'Andrea RJ, Furze J, Crawford J, Woollatt E, Sutherland GR, Vadas MA, Gamble JR (1999) Cloning, characterization, and chromosomal location of a novel human K+-Cl cotransporter. J Biol Chem 274:10661–10667PubMedGoogle Scholar
  52. 52.
    Holtzman EJ, Kumar S, Faaland CA, Warner F, Logue PJ, Erickson SJ, Ricken G, Waldman J, Kumar S, Dunham PB (1998) Cloning, characterization, and gene organization of K-Cl cotransporter from pig and human kidney and C. elegans. Am J Physiol 275:F550–F564PubMedGoogle Scholar
  53. 53.
    Hoover RS, Poch E, Monroy A, Vazquez N, Nishio T, Gamba G, Hebert SC (2003) N-Glycosylation at two sites critically alters thiazide binding and activity of the rat thiazide-sensitive Na+:Cl cotransporter. J Am Soc Nephrol 14:271–282PubMedGoogle Scholar
  54. 54.
    Howard HC, Mount DB, Rochefort D, Byun N, Dupre N, Lu J, Fan X, Song L, Riviere JB, Prevost C, Horst J, Simonati A, Lemcke B, Welch R, England R, Zhan FQ, Mercado A, Siesser WB, George AL Jr, McDonald MP, Bouchard JP, Mathieu J, Delpire E, Rouleau GA (2002) The K-Cl cotransporter KCC3 is mutant in a severe peripheral neuropathy associated with agenesis of the corpus callosum. Nat Genet 32:384–392CrossRefPubMedGoogle Scholar
  55. 55.
    Hubner CA, Stein V, Hermans-Borgmeyer I, Meyer T, Ballanyi K, Jentsch TJ (2001) Disruption of KCC2 reveals an essential role of K-Cl cotransport already in early synaptic inhibition. Neuron 30:515–524CrossRefPubMedGoogle Scholar
  56. 56.
    Igarashi P, Heuvel GBV, Payne JA, Forbush B III (1995) Cloning, embryonic expression, and alternative splicing of a murine kidney-specific Na-K-2Cl cotransporter. Am J Physiol 269:F405–F418PubMedGoogle Scholar
  57. 57.
    Isenring P, Forbush B (2001) Ion transport and ligand binding by the Na-K-Cl cotransporter, structure-function studies. Comp Biochem Physiol [A] 130:487–497Google Scholar
  58. 58.
    Isenring P, Jacoby SC, Chang J, Forbush B (1998) Mutagenic mapping of the Na-K-Cl cotransporter for domains involved in ion transport and bumetanide binding. J Gen Physiol 112:549–558PubMedGoogle Scholar
  59. 59.
    Isenring P, Jacoby SC, Forbush B III (1998) The role of transmembrane domain 2 in cation transport by the Na-K-Cl cotransporter. Proc Natl Acad Sci USA 95:7179–7184CrossRefPubMedGoogle Scholar
  60. 60.
    Jarolimek W, Lewen A, Misgeld U (1999) A furosemide-sensitive K+-Cl cotransporter counteracts intracellular Cl accumulation and depletion in cultured rat midbrain neurons. J Neurosci 19:4695–4704PubMedGoogle Scholar
  61. 61.
    Kakazu Y, Uchida S, Nakagawa T, Akaike N, Nabekura J (2000) Reversibility and cation selectivity of the K+-Cl cotransport in rat central neurons. J Neurophysiol 84:281–288PubMedGoogle Scholar
  62. 62.
    Kanaka C, Ohno K, Okabe A, Kuriyama K, Itoh T, Fukuda A, Sato K (2001) The differential expression patterns of messenger RNAs encoding K-Cl cotransporters (KCC1,2) and Na-K-2Cl cotransporter (NKCC1) in the rat nervous system. Neuroscience 104:933–946CrossRefPubMedGoogle Scholar
  63. 63.
    Karolyi L, Koch MC, Grzeschik KH, Seyberth HW (1998) The molecular genetic approach to "Bartter's syndrome". J Mol Med 76:317–325CrossRefPubMedGoogle Scholar
  64. 64.
    Kelsch W, Hormuzdi S, Straube E, Lewen A, Monyer H, Misgeld U (2001) Insulin-like growth factor 1 and a cytosolic tyrosine kinase activate chloride outward transport during maturation of hippocampal neurons. J Neurosci 21:8339–8347PubMedGoogle Scholar
  65. 65.
    Kim GH, Ecelbarger CA, Mitchell C, Packer RK, Wade JB, Knepper MA (1999) Vasopressin increases Na-K-2Cl cotransporter expression in thick ascending limb of Henle's loop. Am J Physiol 276:F96–F103PubMedGoogle Scholar
  66. 66.
    Kim GH, Masilamani S, Turner R, Mitchell C, Wade JB, Knepper MA (1998) The thiazide-sensitive Na-Cl cotransporter is an aldosterone-induced protein. Proc Natl Acad Sci USA 95:14552–14557CrossRefPubMedGoogle Scholar
  67. 67.
    Kirsch J, Betz H (1998) Glycine-receptor activation is required for receptor clustering in spinal neurons. Nature 392:717–720CrossRefPubMedGoogle Scholar
  68. 68.
    Kunau RT Jr, Weller DR, Webb HL (1975) Clarification of the site of action of chlorothiazide in the rat nephron. J Clin Invest 56:401–407PubMedGoogle Scholar
  69. 69.
    Kunchaparty S, Palcso M, Berkman J, Velazquez H, Desir GV, Bernstein P, Reilly RF, Ellison DH (1999) Defective processing and expression of thiazide-sensitive Na-Cl cotransporter as a cause of Gitelman's syndrome. Am J Physiol 277:F643–F649PubMedGoogle Scholar
  70. 70.
    Kurtz CL, Karolyi L, Seyberth HW, Koch MC, Vargas R, Feldmann D, Vollmer M, Knoers NV, Madrigal G, Guay-Woodford LM (1997) A common NKCC2 mutation in Costa Rican Bartter's syndrome patients: evidence for a founder effect. J Am Soc Nephrol 8:1706–1711PubMedGoogle Scholar
  71. 71.
    Lauf PK (1988) Kinetic comparison of ouabain-resistant K:Cl fluxes (K:Cl cotransport) stimulated in sheep erythrocytes by membrane thiol oxidation and alkylation. Mol Cell Biochem 82:97–106PubMedGoogle Scholar
  72. 72.
    Lauf PK, Adragna NC (2000) K-Cl cotransport: properties and molecular mechanism. Cell Physiol Biochem 10:341–354PubMedGoogle Scholar
  73. 73.
    Lauf PK, Bauer J, Adragna NC, Fujise H, Zade-Oppen AMM, Ryu KH, Delpire E (1992) Erythrocyte K-Cl cotransport: properties and regulation. Am J Physiol 263:C917–C932PubMedGoogle Scholar
  74. 74.
    Lauf PK, Theg BE (1980) A chloride dependent K+ flux induced by N-ethylmaleimide in genetically low K+ sheep and goat erythrocytes. Biochem Biophys Res Commun 92:1422–1428PubMedGoogle Scholar
  75. 75.
    Lauf PK, Zhang J, Delpire E, Fyffe REW, Mount DB, Adragna NC (2002) Erythrocyte K-Cl cotransport: immunocytochemical and functional evidence for more than one KCC isoform in HK and LK sheep red blood cells. Comp Biochem Physiol 130:499–509Google Scholar
  76. 76.
    Leinekugel X, Medina I, Khalilov I, Ben Ari Y, Khazipov R (1997) Ca2+ oscillations mediated by the synergistic excitatory actions of GABAA and NMDA receptors in the neonatal hippocampus. Neuron 18:243–255PubMedGoogle Scholar
  77. 77.
    Lemmink HH, van den Heuvell LPWJ, van Dijk HA, Merkx GFM, Smilde TJ, Taschner PEM, Monnens LAH, Hebert SC, Knoers NVAM (1996) Linkage of Gitelman syndrome to the human thiazide-sensitive sodium-chloride cotransporter gene with identification of mutations in three Dutch families. Pediatr Nephrol 10:403–407CrossRefPubMedGoogle Scholar
  78. 78.
    Li C, Wang W, Kwon TH, Knepper MA, Nielsen S, Frokiaer J (2003) Altered expression of major renal Na transporters in rats with unilateral ureteral obstruction. Am J Physiol 284:F155–F166Google Scholar
  79. 79.
    Li H, Tornberg J, Kaila K, Airaksinen MS, Rivera C (2002) Patterns of cation-chloride cotransporter expression during embryonic rodent CNS development. Eur J Neurosci 16:2358–2370CrossRefPubMedGoogle Scholar
  80. 80.
    Lifton RP, Gharavi AG, Geller DS (2001) Molecular mechanisms of human hypertension. Cell 104:545–556PubMedGoogle Scholar
  81. 81.
    Loffing J, Loffing-Cueni D, Valderrabano V, Klausli L, Hebert SC, Rossier BC, Hoenderop JG, Bindels RJ, Kaissling B (2001) Distribution of transcellular calcium and sodium transport pathways along mouse distal nephron. Am J Physiol 281:F1021–F1027Google Scholar
  82. 82.
    Lu J, Karadsheh M, Delpire E (1999) Developmental regulation of the neuronal-specific isoform of K-Cl cotransporter KCC2 in postnatal rat brains. J Neurobiol 39:558–568CrossRefPubMedGoogle Scholar
  83. 83.
    Lytle C (1997) Activation of the avian erythrocyte Na-K-Cl cotransport protein by cell shrinkage, cAMP, fluoride, and calyculin-A involves phosphorylation at common sites. J Biol Chem 272:15069–15077CrossRefPubMedGoogle Scholar
  84. 84.
    Lytle C, McManus TJ, Haas M (1998) A model of Na-K-2Cl cotransport based on ordered ion binding and glide symmetry. Am J Physiol 274:C299–C309PubMedGoogle Scholar
  85. 85.
    Manning J, Beutler K, Knepper MA, Vehaskari VM (2002) Upregulation of renal BSC1 and TSC in prenatally programmed hypertension. Am J Physiol 283:F202–F206Google Scholar
  86. 86.
    Masilamani S, Wang X, Kim GH, Brooks H, Nielsen J, Nielsen S, Nakamura K, Stokes JB, Knepper MA (2002) Time course of renal Na-K-ATPase, NHE3, NKCC2, NCC, and ENaC abundance changes with dietary NaCl restriction. Am J Physiol 283:F648–F657Google Scholar
  87. 87.
    Mastroianni N, Bettinelli A, Bianchetti M, Colussi G, De Fusco M, Sereni F, Ballabio A, Casari G (1996) Novel molecular variants of the Na-Cl cotransporter gene are responsible for Gitelman syndrome. Am J Hum Genet 59:1019–1026PubMedGoogle Scholar
  88. 88.
    Mastroianni N, De Fusco M, Zollo M, Arrigo G, Zuffardi O, Bettinelli A, Ballabio A, Casari G (1996) Molecular cloning, expression pattern, and chromosomal localization of the human Na-Cl thiazide-sensitive cotransporter (SLC12A3). Genomics 35:486–493CrossRefPubMedGoogle Scholar
  89. 89.
    Mercado A, Song L, Vazquez N, Mount DB, Gamba G (2000) Functional comparison of the K+-Cl cotransporters KCC1 and KCC4. J Biol Chem 275:30326–30334PubMedGoogle Scholar
  90. 90.
    Mikawa S, Wang C, Shu F, Wang T, Fukuda A, Sato K (2002) Developmental changes in KCC1, KCC2 and NKCC1 mRNAs in the rat cerebellum. Brain Res Dev Brain Res 136:93–100CrossRefPubMedGoogle Scholar
  91. 91.
    Miles R (1999) Neurobiology. A homeostatic switch. Nature 397:215–216CrossRefPubMedGoogle Scholar
  92. 92.
    Monroy A, Plata C, Hebert SC, Gamba G (2000) Characterization of the thiazide-sensitive Na+-Cl cotransporter: a new model for ions and diuretics interaction. Am J Physiol 279:F161–F169Google Scholar
  93. 93.
    Mount DB, Baekgaard A, Hall AE, Plata C, Xu J, Beier DR, Gamba G, Hebert SC (1999) Isoforms of the Na-K-2Cl cotransporter in murine TAL I. Molecular characterization and intrarenal localization. Am J Physiol 276:F347–F358PubMedGoogle Scholar
  94. 94.
    Mount DB, Gamba G (2001) Renal potassium-chloride cotransporters. Curr Opin Nephrol Hypertens 10:685–691CrossRefPubMedGoogle Scholar
  95. 95.
    Mount DB, Mercado A, Song L, Xu J, George AL Jr, Delpire E, Gamba G (1999) Cloning and characterization of KCC3 and KCC4, new members of the cation-chloride cotransporter gene family. J Biol Chem 274:16355–16362PubMedGoogle Scholar
  96. 96.
    Na KY, Oh YK, Han JS, Joo KW, Lee JS, Earm JH, Knepper MA, Kim GH (2003) Upregulation of Na+ transporter abundances in response to chronic thiazide or loop diuretic treatment in rats. Am J Physiol 284:F133–F143Google Scholar
  97. 97.
    Novello FC, Sprague JM (1957) Benzothiadiazine dioxides as novel diuretics. J Am Chem Soc 79:2028–2029Google Scholar
  98. 98.
    Obermuller N, Bernstein P, Velazquez H, Reilly R, Moser D, Ellison DH, Bachmann S (1995) Expression of the thiazide-sensitive Na-Cl cotransporter in rat and human kidney. Am J Physiol 269:F900–F910PubMedGoogle Scholar
  99. 99.
    Pace AJ, Lee E, Athirakul K, Coffman TM, O'Brien DA, Koller BH (2000) Failure of spermatogenesis in mouse lines deficient in the Na+-K+-2Cl cotransporter. J Clin Invest 105:441–450PubMedGoogle Scholar
  100. 100.
    Pace AJ, Lee E, Athirakul K, Coffman TM, O'Brien DA, Koller BH (2000) Failure of spermatogenesis in mouse lines deficient in the Na+-K+-2Cl cotransporter. J Clin Invest 105:441–450PubMedGoogle Scholar
  101. 101.
    Payne JA (1997) Functional characterization of the neuronal-specific K-Cl cotransporter: implications for [K+]o regulation. Am J Physiol 273:C1516–C1525PubMedGoogle Scholar
  102. 102.
    Payne JA, Forbush B III (1994) Alternatively spliced isoforms of the putative renal Na-K-Cl cotransporter are differentially distributed within the rabbit kidney. Proc Natl Acad Sci USA 91:4544–4548PubMedGoogle Scholar
  103. 103.
    Payne JA, Stevenson TJ, Donaldson LF (1996) Molecular characterization of a putative K-Cl cotransporter in rat brain. A neuronal-specific isoform. J Biol Chem 271:16245–16252PubMedGoogle Scholar
  104. 104.
    Payne JA, Xu JC, Haas M, Lytle CY, Ward D, Forbush B III (1995) Primary structure, functional expression, and chromosomal localization of the bumetanide-sensitive Na-K-Cl cotransporter in human colon. J Biol Chem 270:17977–17985CrossRefPubMedGoogle Scholar
  105. 105.
    Pearson MM, Lu J, Mount DB, Delpire E (2001) Localization of the K+-Cl cotransporter, KCC3, in the central and peripheral nervous systems: expression in the choroid plexus, large neurons and white matter tracts. Neuroscience 103:481–491CrossRefPubMedGoogle Scholar
  106. 106.
    Piechotta K, Lu J, Delpire E (2002) Cation chloride cotransporters interact with the stress-related kinases Ste20-related proline-alanine-rich kinase (SPAK) and oxidative stress response 1 (OSR1). J Biol Chem 277:50812–50819CrossRefPubMedGoogle Scholar
  107. 107.
    Plata C, Meade P, Hall A, Welch RC, Vazquez N, Hebert SC, Gamba G (2001) Alternatively spliced isoform of apical Na+-K+-2Cl cotransporter gene encodes a furosemide-sensitive Na+-Cl cotransporter. Am J Physiol 280:F574–F582Google Scholar
  108. 108.
    Plata C, Meade P, Vazquez N, Hebert SC, Gamba G (2002) Functional properties of the apical Na+-K+-2Cl cotransporter isoforms. J Biol Chem 277:11004–11012CrossRefPubMedGoogle Scholar
  109. 109.
    Plata C, Mount DB, Rubio V, Hebert SC, Gamba G (1999) Isoforms of the apical Na-K-2Cl cotransporter in murine thick ascending limb. II. Functional characterization and mechanism of activation by cAMP. Am J Physiol 276:F359–F366PubMedGoogle Scholar
  110. 110.
    Plotkin MD, Kaplan MR, Peterson LR, Gullans SR, Hebert SC, Delpire E (1997) Expression of the Na-K-2Cl cotransporter, BSC2, in the nervous system. Am J Physiol 272:C173–C183PubMedGoogle Scholar
  111. 111.
    Plotkin MD, Kaplan MR, Verlander JW, Lee W-S, Brown D, Poch E, Gullans SR, Hebert SC (1996) Localization of the thiazide sensitive Na-Cl cotransporter, rTSC1, in the rat kidney. Kidney Int 50:174–183PubMedGoogle Scholar
  112. 112.
    Plotkin MD, Snyder EY, Hebert SC, Delpire E (1997) Expression of the Na-K-2Cl cotransporter is developmentally regulated in postnatal rat brains: a possible mechanism underlying GABA's excitatory role in immature brain. J Neurobiol 33:781–795CrossRefPubMedGoogle Scholar
  113. 113.
    Pollak MR, Delaney VB, Graham RM, Hebert SC (1996) Gitelmans syndrome (Bartters variant) maps to the thiazide-sensitive cotransporter gene locus on chromosome 16q13 in a large kindred. J Am Soc Nephrol 7:2244–2248PubMedGoogle Scholar
  114. 114.
    Race JE, Makhlouf FN, Logue PJ, Wilson FH, Dunham PB, Holtzman EJ (1999) Molecular cloning and functional characterization of KCC3, a new K-Cl cotransporter. Am J Physiol 277:C1210–C1219PubMedGoogle Scholar
  115. 115.
    Randall J, Thorne T, Delpire E (1997) Partial cloning and characterization of Slc12a2: the gene encoding the secretory Na+-K+-2Cl cotransporter. Am J Physiol 273:C1267–C1277PubMedGoogle Scholar
  116. 116.
    Rivera C, Li H, Thomas-Crusells J, Lahtinen H, Viitanen T, Nanobashvili A, Kokaia Z, Airaksinen MS, Voipio J, Kaila K, Saarma M (2002) BDNF-induced TrkB activation down-regulates the K+-Cl cotransporter KCC2 and impairs neuronal Cl extrusion. J Cell Biol 159:747–752CrossRefPubMedGoogle Scholar
  117. 117.
    Rivera C, Voipio J, Payne JA, Ruusuvuori E, Lahtinen H, Lamsa K, Pirvola U, Saarma M, Kaila K (1999) The K+/Cl co-transporter KCC2 renders GABA hyperpolarizing during neuronal maturation. Nature 397:251–255PubMedGoogle Scholar
  118. 118.
    Rocha AS, Kokko JP (1973) Sodium chloride and water transport in the medullary thick ascending limb of Henle. Evidence for active chloride transport. J Clin Invest 52:612–623PubMedGoogle Scholar
  119. 119.
    Russell JM (1983) Cation-coupled chloride influx in squid axon. Role of potassium and stoichiometry of the transport process. J Gen Physiol 81:909–925PubMedGoogle Scholar
  120. 120.
    Russell JM (2000) Sodium-potassium-chloride cotransport. Physiol Rev 80:211–276PubMedGoogle Scholar
  121. 121.
    Schultheis PJ, Lorenz JN, Meneton P, Nieman ML, Riddle TM, Flagella M, Duffy JJ, Doetschman T, Miller ML, Shull GE (1998) Phenotype resembling Gitelman's syndrome in mice lacking the apical Na+-Cl cotransporter of the distal convoluted tubule. J Biol Chem 273:29150–29155PubMedGoogle Scholar
  122. 122.
    Shen MR, Chou CY, Hsu KF, Liu HS, Dunham PB, Holtzman EJ, Ellory JC (2001) The KCl cotransporter isoform KCC3 can play an important role in cell growth regulation. Proc Natl Acad Sci USA 98:14714–14719CrossRefPubMedGoogle Scholar
  123. 123.
    Simon DB, Karet FE, Hamdan JM, DiPietro A, Sanjad SA, Lifton RP (1996) Bartter's syndrome, hypokalaemic alkalosis with hypercalciuria, is caused by mutations in the Na-K-2Cl cotransporter NKCC2. Nat Genet 13:183–188PubMedGoogle Scholar
  124. 124.
    Simon DB, Nelson-Williams C, Bia MJ, Ellison D, Karet FE, Molina AM, Vaara I, Iwata F, Cushner HM, Koolen M, Gainza FJ, Gitleman HJ, Lifton RP (1996) Gitelman's variant of Bartter's syndrome, inherited hypokalaemic alkalosis, is caused by mutations in the thiazide-sensitive Na-Cl cotransporter. Nat Genet 12:24–30PubMedGoogle Scholar
  125. 125.
    Song L, Mercado A, Vazquez N, Xie Q, Desai R, George AL Jr, Gamba G, Mount DB (2002) Molecular, functional, and genomic characterization of human KCC2, the neuronal K-Cl cotransporter. Brain Res Mol Brain Res 103:91–105CrossRefPubMedGoogle Scholar
  126. 126.
    Steinlein OK, Neubauer BA, Sander T, Song L, Stoodt J, Mount DB (2001) Mutation analysis of the potassium chloride cotransporter KCC3 (SLC12A6) in rolandic and idiopathic generalized epilepsy. Epilepsy Res 44:191–195CrossRefPubMedGoogle Scholar
  127. 127.
    Stokes JB (1984) Sodium chloride absorption by the urinary bladder of the winter flounder. A thiazide-sensitive, electrically neutral transport system. J Clin Invest 74:7–16PubMedGoogle Scholar
  128. 128.
    Strange K, Singer TD, Morrison R, Delpire E (2000) Dependence of KCC2 K-Cl cotransporter activity on a conserved carboxy terminus tyrosine residue. Am J Physiol 279:C860–C867Google Scholar
  129. 129.
    Su W, Shmukler BE, Chernova MN, Stuart-Tilley AK, De Franceschi L, Brugnara C, Alper SL (1999) Mouse K-Cl cotransporter KCC1: cloning, mapping, pathological expression, and functional regulation. Am J Physiol 277:C899–C912PubMedGoogle Scholar
  130. 130.
    Sung KW, Kirby M, McDonald MP, Lovinger DM, Delpire E (2000) Abnormal GABAA receptor-mediated currents in dorsal root ganglion neurons isolated from Na-K-2Cl cotransporter null mice. J Neurosci 20:7531–7538PubMedGoogle Scholar
  131. 131.
    Sung KW, Kirby M, McDonald MP, Lovinger DM, Delpire E (2000) Abnormal GABAA receptor-mediated currents in dorsal root ganglion neurons isolated from Na-K-2Cl cotransporter null mice. J Neurosci 20:7531–7538PubMedGoogle Scholar
  132. 132.
    Syren ML, Tedeschi S, Cesareo L, Bellantuono R, Colussi G, Procaccio M, Ali A, Domenici R, Malberti F, Sprocati M, Sacco M, Miglietti N, Edefonti A, Sereni F, Casari G, Coviello DA, Bettinelli A (2002) Identification of fifteen novel mutations in the SLC12A3 gene encoding the Na-Cl Co-transporter in Italian patients with Gitelman syndrome. Hum Mutat 20:78–82CrossRefGoogle Scholar
  133. 133.
    Takahashi N, Chernavvsky DR, Gomez RA, Igarashi P, Gitelman HJ, Smithies O (2000) Uncompensated polyuria in a mouse model of Bartter's syndrome. Proc Natl Acad Sci USA 97:5434–5439PubMedGoogle Scholar
  134. 134.
    Takeuchi K, Kure S, Kato T, Taniyama Y, Takahashi N, Ikeda Y, Abe T, Narisawa K, Muramatsu Y, Abe K (1996) Association of a mutation in thiazide-sensitive Na-Cl cotransporter with a familial Gitelman's syndrome. J Clin Endocrinol Metab 81:4496–4499PubMedGoogle Scholar
  135. 135.
    Thompson SM, Gahwiler BH (1989) Activity-dependent disinhibition. II. Effects of extracellular potassium, furosemide, and membrane potential on E Cl in hippocampal CA3 neurons. J Neurophysiol 61:512–523PubMedGoogle Scholar
  136. 136.
    Van Den Pol AN, Obrietan K, Chen G (1996) Excitatory actions of GABA after neuronal trauma. J Neurosci 16:4283–4292PubMedGoogle Scholar
  137. 137.
    Vardi N, Zhang LL, Payne JA, Sterling P (2000) Evidence that different cation chloride cotransporters in retinal neurons allow opposite responses to GABA. J Neurosci 20:7657–7663PubMedGoogle Scholar
  138. 138.
    Vargus-Poussou R, Feldmann D, Vollmer M, Konrad M, Kelly RP, van den Heuvell LPWJ, Tebourbi L, Brandis M, Karolyil L, Hebert SC, Lemmink HH, Deschenes G, Hildebrandt F, Seyberth H, Guay-Woodford LM, Knoers NVAM, Antignac C (1998) Novel molecular variants of the Na-K-2Cl cotransporter gene are responsible for antenatal Bartter syndrome. Am J Hum Genet 62:1332–1340CrossRefPubMedGoogle Scholar
  139. 139.
    Velazquez H, Good DW, Wright FS (1984) Mutual dependence of sodium and chloride absorption by renal distal tubule. Am J Physiol 247:F904–F911PubMedGoogle Scholar
  140. 140.
    Velazquez H, Naray-Fejes-Toth A, Silva T, Andujar E, Reilly RF, Desir GV, Ellison DH (1998) Rabbit distal convoluted tubule coexpresses NaCl cotransporter and 11 beta-hydroxysteroid dehydrogenase II mRNA. Kidney Int 54:464–472PubMedGoogle Scholar
  141. 141.
    Verlander JW, Tran TM, Zhang L, Kaplan MR, Hebert SC (1998) Estradiol enhances thiazide-sensitive NaCl cotransporter density in the apical plasma membrane of the distal convoluted tubule in ovariectomized rats. J Clin Invest 101:1661–1669PubMedGoogle Scholar
  142. 142.
    Vu TQ, Payne JA, Copenhagen DR (2000) Localization and developmental expression patterns of the neuronal K-Cl cotransporter (KCC2) in the rat retina. J Neurosci 20:1414–1423PubMedGoogle Scholar
  143. 143.
    Williams JR, Sharp JW, Kumari VG, Wilson M, Payne JA (1999) The neuron-specific K-Cl cotransporter, KCC2. Antibody development and initial characterization of the protein. J Biol Chem 274:12656–12664CrossRefPubMedGoogle Scholar
  144. 144.
    Wilson FH, Disse-Nicodeme S, Choate KA, Ishikawa K, Nelson-Williams C, Desitter I, Gunel M, Milford DV, Lipkin GW, Achard JM, Feely MP, Dussol B, Berland Y, Unwin RJ, Mayan H, Simon DB, Farfel Z, Jeunemaitre X, Lifton RP (2001) Human hypertension caused by mutations in WNK kinases. Science 293:1107–1112PubMedGoogle Scholar
  145. 145.
    Wilson FH, Kahle KT, Sabath E, Lalioti MD, Rapson AK, Hoover RS, Hebert SC, Gamba G, Lifton RP (2003) Molecular pathogenesis of inherited hypertension with hyperkalemia: the Na-Cl cotransporter is inhibited by wild-type but not mutant WNK4. Proc Natl Acad Sci USA 100:680–684CrossRefPubMedGoogle Scholar
  146. 146.
    Woo NS, Lu J, England R, McClellan R, Dufour S, Mount DB, Deutch AY, Lovinger DM, Delpire E (2002) Hyperexcitability and epilepsy associated with disruption of the mouse neuronal-specific K-Cl cotransporter gene. Hippocampus 12:258–268CrossRefPubMedGoogle Scholar
  147. 147.
    Xu J-C, Lytle C, Zhu TT, Payne JA, Benz E Jr, Forbush B III (1994) Molecular cloning and functional expression of the bumetanide-sensitive Na-K-Cl cotransporter. Proc Natl Acad Sci USA 91:2201–2205PubMedGoogle Scholar
  148. 148.
    Yang C-L, Angell J, Mitchell R, Ellison DH (2003) WNK kinases regulate thiazide-sensitive Na-Cl cotransport. J Clin Invest 111:1039–1045CrossRefPubMedGoogle Scholar
  149. 149.
    Yang T, Huang YG, Singh I, Schnermann J, Briggs JP (1996) Localization of bumetanide- and thiazide-sensitive Na-K-Cl cotransporters along the rat nephron. Am J Physiol 271:F931–F939PubMedGoogle Scholar

Copyright information

© Springer-Verlag  2004

Authors and Affiliations

  • Steven C. Hebert
    • 1
  • David B. Mount
    • 2
    • 3
  • Gerardo Gamba
    • 4
    • 5
  1. 1.Department of Cellular and Molecular PhysiologyYale University Medical SchoolSHM B147, New HavenUSA
  2. 2.Renal Division and Membrane Biology ProgramWest Roxbury VA Medical Center and Brigham and Women's HospitalUSA
  3. 3.West Roxbury VA Medical Center West RoxburyUSA
  4. 4.Molecular Physiology UnitInstituto de Investigaciones BiomédicasMexico
  5. 5.Instituto Nacional de Ciencias Médicas y Nutrición Salvador ZubiránMexico CityMexico

Personalised recommendations