Skip to main content
Log in

Nature and expression of dihydropyridine-sensitive and -insensitive calcium currents in hair cells of frog semicircular canals

  • Cellular Neurophysiology
  • Published:
Pflügers Archiv Aims and scope Submit manuscript

Abstract

Ca2+ currents in hair cells of the frog crista ampullaris were studied using the whole-cell patch-clamp technique. Currents were recorded in situ from hair cells in peripheral, intermediate and central regions of the sensory epithelium. Two types of Ca2+ currents were found: a partially inactivating current that was expressed by nearly all central cells and by about 65% of intermediate and peripheral cells, and a sustained current expressed by the remaining cell population. The mean Ca2+ current amplitude was larger in intermediate cells than in central or peripheral cells. The two types of Ca2+ currents were composed of two components: a large, nifedipine-sensitive (NS) current and a small, nifedipine-insensitive (NI) current. The latter was resistant to SNX-482, ω-conotoxin MVIIC and ω-agatoxin IVA and to ω-conotoxin GVIA, antagonists of R, P/Q and N-type Ca2+ channels. The amplitude of NS and NI currents varied among peripheral cells, where the current density gradually increased from the beginning of the region toward its end. No significant variation of Ca2+ current density was detected in hair cells of either intermediate or central regions. These results demonstrate the presence of regional and intraregional variations in the expression of L and non-L Ca2+ channels in the frog crista ampullaris. Finally, immunocytochemical investigations revealed the presence of Ca2+ channel subunits of the α1D type and the unexpected expression of α1B-subunits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1A–D.
Fig. 2A–D.
Fig. 3A, B.
Fig. 4.
Fig. 5A–C.
Fig. 6A–D.
Fig. 7A, B.

Similar content being viewed by others

References

  1. Bezprozvanny N, Scheller RH, Tsien R W (1995) Functional impact of syntaxin on the gating of N-type and L-type calcium channels. Nature 378:623–626

    CAS  PubMed  Google Scholar 

  2. Crawford AC, Fettiplace R (1981) An electrical tuning mechanism in turtle cochlear hair cells. J Physiol (Lond) 312:377–412

    Google Scholar 

  3. Fuchs PA, Nagai T, Evans MG (1988) Electrical tuning in hair cells isolated from the chick cochlea. J Neurosci 12:800–809

    Google Scholar 

  4. Fuchs PA, Evans MG, Murrow BW (1990) Calcium currents in hair cells isolated from the cochlea of the chick. J Physiol (Lond) 429:553–568

    Google Scholar 

  5. Green GE, Khan KM, Beisel DW, Drescher MJ, Hartfield JS, Drescher DJ (1996) Calcium channel subunits in mouse cochlea. J Neurochem 67:37–45

    CAS  PubMed  Google Scholar 

  6. Goldberg JM (1991) The vestibular end organs: morphological and physiological diversity of afferents. Curr Opin Neurobiol 1:229–235

    CAS  PubMed  Google Scholar 

  7. Goldberg JM, Brichta AM (1998) Evolutionary trends in the organization of the vertebrate crista ampullaris. Otolaryngol Head Neck Surg 119:165–171

    CAS  PubMed  Google Scholar 

  8. Guth PS, Perin P, Norris CH, Valli P (1998) The vestibular hair cells: post-transductional signal processing. Prog Neurobiol 54:193–247

    Google Scholar 

  9. Honrubia V, Hoffman LF, Sitko S, Schwartz IR (1989) Anatomic and physiological correlates in bullfrog vestibular nerve. J Neurophysiol 61:688–701

    CAS  PubMed  Google Scholar 

  10. Hudspeth AJ, Lewis RS (1988a) Kinetic analysis of voltage- and ion-dependent conductances in saccular hair cells of the bullfrog, Rana catesbeiana. J Physiol (Lond) 400:237–274

    Google Scholar 

  11. Kollmar R, Fak J, Montgomery LG, Hudspeth AJ (1977) Predominance of α1D subunit in L-type voltage-gated Ca2+ channels of hair cells in the chicken's cochlea. Proc Nat Acad Sci USA 94:14883–14888

    Article  Google Scholar 

  12. Lang DG, Correia MJ (1989) Studies of solitary semicircular canal hair cells in adult pigeon: voltage-dependent ionic conductances. J Neurophysiol 62:935–945

    CAS  PubMed  Google Scholar 

  13. Lopez I, Ishiyama G, Ishiyama A, Jen JC, Liu F, Baloh RW (1999) Differential subcellular immunolocalization of voltage-gated calcium channel α1 subunits in the chinchilla cristae ampullaris. Neuroscience 92:773–782

    Article  CAS  PubMed  Google Scholar 

  14. Lysakowsky A (1996) Synaptic organization of the crista ampullaris in vertebrates. Ann NY Acad Sci 781:164–182

    PubMed  Google Scholar 

  15. Marcotti W, Russo G, Prigioni I (1999) Position-dependent expression of inwardly rectifying K+ currents by hair cells of frog semicircular canals. Neuroreport 10:601–606

    CAS  PubMed  Google Scholar 

  16. Martinez-Dunst C, Michaels RL, Fuchs PA (1997) Release sites and calcium channels in hair cells of chick's cochlea. J Neurosci 17:9133–9144

    CAS  PubMed  Google Scholar 

  17. Martini M, Rossi ML, Rubbini G, Rispoli G (2000) Calcium currents in hair cells isolated from semicircular canals of the frog. Biophys J 78:1240–1254

    CAS  PubMed  Google Scholar 

  18. Masetto S, Correia MJ (1997) Electrophysiological properties of vestibular sensory and supporting cells in the labyrinth slices: before and during regeneration. J Neurophysiol 78:1913–1927

    CAS  PubMed  Google Scholar 

  19. Masetto S, Russo G, Prigioni I (1994) Differential expression of potassium currents by hair cells in thin slices of frog crista ampullaris. J Neurophysiol 72:443–455

    CAS  PubMed  Google Scholar 

  20. Moser T, Beutner D (2000) Kinetics of exocytosis and endocytosis at the cochlear inner hair cell afferent synapse of the mouse. Proc Natl Acad Sci USA 97:883–888

    Article  CAS  PubMed  Google Scholar 

  21. Parsons TD, Lenzi D, Almers W, Roberts WM (1994) Calcium-triggered exocytosis and endocytosis in an isolated presynaptic cell: capacitance measurements in saccular hair cells. Neuron 13:875–883

    CAS  PubMed  Google Scholar 

  22. Perez-Reyes E, Schmeider T (1995) Molecular biology of calcium channels. Kidney Int 48:1111–1124

    CAS  PubMed  Google Scholar 

  23. Perin P, Soto E, Vega R, Botta L, Masetto S, Zucca G, Valli P (2000) Calcium channels functional roles in the frog semicircular canal. Neuroreport 11:417–420

    CAS  PubMed  Google Scholar 

  24. Perin P, Masetto S, Martini M, Rossi ML, Rubbini G, Rispoli G, Guth P, Valli P (2001) Regional distribution of calcium currents in frog semicircular canal hair cells. Hear Res 152:67–76

    Article  CAS  PubMed  Google Scholar 

  25. Peterson EH (1998) Are there parallel channels in vestibular nerve? News Physiol Sci 13:194–201

    PubMed  Google Scholar 

  26. Platzer J, Engel J, Schrott-Fischer A, Stephan K, Bova S, Chen H, Zheng H, Striessing J (2000) Congenital deafness and sinoatrial node dysfunction in mice lacking class D L-type Ca2+ channels. Cell 102:89–97

    CAS  PubMed  Google Scholar 

  27. Prigioni I, Masetto S, Russo G, Taglietti V (1992) Calcium currents in solitary hair cells isolated from frog crista ampullaris. J Vestib Res 2:31–39

    CAS  PubMed  Google Scholar 

  28. Prigioni I, Russo G, Marcotti W (1996) Potassium currents of pear-shaped hair cells in relation to their location in frog crista ampullaris. Neuroreport 7:1841–1845

    CAS  PubMed  Google Scholar 

  29. Rennie KJ, Ashmore JF (1991) Ionic currents in isolated vestibular hair cells from the guinea-pig crista ampullaris. Hear Res 51:279–291

    CAS  PubMed  Google Scholar 

  30. Rennie KJ, Correia MJ (1994) Potassium currents in mammalian and avian isolated type I semicircular canal hair cells. J Neurophysiol 71:317–329

    CAS  PubMed  Google Scholar 

  31. Ricci AJ, Gray-Keller M, Fettiplace R (2000) Tonotopic variations of calcium signalling in turtle auditory hair cells. J Physiol (Lond) 524:423–436

    Google Scholar 

  32. Roberts WM, Jacobs RA, Hudspeth AJ (1990) Colocalization of ion channels involved in frequency selectivity and synaptic transmission at presynaptic active zones of hair cells. J Neurosci 10:3664–3684

    CAS  PubMed  Google Scholar 

  33. Robertson D, Paki B (2002) Role of L-Type Ca2+ channels in transmitter release from mammalian inner hair cells. Single-neuron activity. J Neurophysiol 87:2734–2740

    CAS  PubMed  Google Scholar 

  34. Rodriguez-Contreras A, Yamoah EN (2001) Direct measurement of single-channel Ca2+ currents in bullfrog hair cells reveals two distinct channel subtypes. J Physiol (Lond) 534:669–689

    Google Scholar 

  35. Rüsch A, Eatock RA (1996) A delayed rectifier conductance in Type I hair cells of the mouse utricle. J Neurophysiol 76:995–1004

    PubMed  Google Scholar 

  36. Russo G, Lelli A, Marcotti W, Prigioni I (2001) Gradients of expression of calcium and potassium currents in frog crista ampullaris. Pflugers Arch 442:814–820

    Article  CAS  PubMed  Google Scholar 

  37. Singer D, Biel M, Lotan I, Flockerzi V, Hofmann F, Dascal N (1991) The roles of the subunits in the function of the calcium channel. Science 253:1553–1557

    CAS  PubMed  Google Scholar 

  38. Spassova M, Eisen MD, Saunders JC, Parsons TD (2001) Chick cochlear hair cell exocytosis mediated by dihydropyridine-sensitive calcium channels. J Physiol (Lond) 535:689–696

    Google Scholar 

  39. Striessing J (1999) Pharmacology, structure and function of cardiac L-type Ca2+ channels. Cell Physiol Biochem 9:242–269

    Article  PubMed  Google Scholar 

  40. Su ZL, Jiang SC, Gu R, Yang WP (1995) Two types of calcium channels in bullfrog saccular hair cells. Hear Res 87:62–68

    Article  CAS  PubMed  Google Scholar 

  41. Wang G, Dayanithi G, Newcomb R, Lemos JR (1999) An R-type Ca2+ current in neurohypophysial terminals preferentially regulates oxytocin secretion. J Neurosci 19:9235–9241

    CAS  PubMed  Google Scholar 

  42. Weng T, Correia MJ (1999) Regional distribution of ionic currents and membrane voltage responses of type II hair cells in the vestibular neuroepithelium. J Neurophysiol 82:2451–2461

    CAS  PubMed  Google Scholar 

  43. Wersall J, Bagger-Sjoback D (1974) Morphology of the vestibular sense organ. In: Kornhuber HH (ed) Handbook of sensory physiology Vol. VI. Springer, Berlin Heidelberg New York, pp 123–170

  44. Westenbroek RE, Hell JW, Warner C, Dudel SJ, Snutch TP, Catteral WA (1992) Biochemical properties and subcellular distribution of an N-type calcium channel α1 antibody. Neuron 9:1099–1115

    CAS  PubMed  Google Scholar 

  45. Yokoyama CT, Westenbroek RE, Hell JW, Soong TW, Snutch TP, Catterall WA (1995) Biochemical properties and subcellular distribution of the neuronal class E calcium channel alpha 1 subunit. J Neurosci 15:6419–6432

    CAS  PubMed  Google Scholar 

  46. Zidanic M, Fuchs PA (1995) Kinetic analysis of barium currents in chick cochlear hair cells. Biophys J 68:1323–1336

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Ministero Italiano dell' Università e della Ricerca (MIUR), grant-Cofin-MURST-2000 and 2002, Rome, Italy. The authors wish to thank Dr. W. Marcotti for his critical reading of an early version of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivo Prigioni.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Russo, G., Lelli, A., Gioglio, L. et al. Nature and expression of dihydropyridine-sensitive and -insensitive calcium currents in hair cells of frog semicircular canals. Pflugers Arch - Eur J Physiol 446, 189–197 (2003). https://doi.org/10.1007/s00424-003-1050-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-003-1050-y

Keywords

Navigation