Skip to main content
Log in

Ion selectivity of stretch-activated cation currents in mouse ventricular myocytes

  • Ion Channels, Transporters
  • Published:
Pflügers Archiv Aims and scope Submit manuscript

Abstract

Stretch-activated non-selective cation currents (I SAC) constitute a mechanism that can induce cardiac arrhythmias. We studied I SAC in mouse ventricular myocytes by stretching part of the cell surface between the patch-pipette and a motor-driven glass stylus. In non-clamped cells, local stretch depolarised and induced after-depolarisations and extrasystoles. In voltage-clamped cells (K+ currents suppressed) I SAC activated by local stretch had a nearly linear voltage dependence and reversed polarity between −12 and 0 mV. Conductance G SAC increased with the extent of local stretch. I SAC was not a Cl current (insensitivity to replacement of Cl by aspartate). I SAC was not a Ca2+-activated current (insensitivity to 5 mM intracellular BAPTA). G SAC was blocked by 5 µM GdCl3 or by 75 mM extracellular (e.c.) CaCl2. Removal of e.c. CaCl2 increased G SAC 2.5-fold, as if G SAC were sensitive to Ca2+ and Gd3+. Replacement of 150 mM e.c. Na+ by 150 mM Cs+, Li+, tetraethylammonium (TEA+) or N-methyl d-glucosamine (NMDG+) yielded currents that suggested for the conductance a selectivity G Cs>G Na>G Li>G TEA>G NMDG. I SAC was suppressed by cytochalasin D, as if an intact F-actin cytoskeleton were necessary for activation of I SAC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2A–E.
Fig. 3A, B.
Fig. 4A, B.
Fig. 5A, B.
Fig. 6A, B.
Fig. 7A, B.
Fig. 8A–C.
Fig. 9A, B.
Fig. 10A, B.
Fig. 11A, B.

Similar content being viewed by others

References

  1. Anumonwo JMB, Tallini YN, Vetter FJ, Jalife J (2001) Action potential characteristics and arrhythmogenic properties of the cardiac conduction system of the murine heart. Circ Res 89:329–335

    CAS  PubMed  Google Scholar 

  2. Bett GCL, Sachs F (2000) Activation and inactivation of mechanosensitive currents in the chick heart. J Membr Biol 173:237–254

    Article  CAS  PubMed  Google Scholar 

  3. Calabrese B, Tabarean IV, Juranka P, Morris CE (2002) Mechanosensitivity of N-type calcium channel currents. Biophys J 83:2560–2574

    CAS  PubMed  Google Scholar 

  4. Calaghan SC, White E (1999) The role of calcium in the response of cardiac muscle to stretch. Prog Biophys Mol Biol 71:59–90

    CAS  PubMed  Google Scholar 

  5. Cooper JA, (1987) Effects of cytochalasin and phalloidin on actin. J Cell Biol 105:1473–1478

    CAS  PubMed  Google Scholar 

  6. Ehara T, Noma A, Ono K (1988) Calcium-activated non-selective cation channel in ventricular cells isolated from adult guinea-pig hearts. J Physiol (Lond) 403:117–133

    Google Scholar 

  7. Gannier F, White E, Garnier D, Le Guennec JY (1996) A possible mechanism for large stretch-induced increase in Ca2+ i in isolated guinea-pig ventricular myocytes. Cardiovasc Res 32:158–167

    Article  CAS  PubMed  Google Scholar 

  8. Hu H, Sachs F (1996) Mechanically activated currents in chick heart cells. J Membr Biol 154:205–216

    Article  CAS  PubMed  Google Scholar 

  9. Hu H, Sachs F (1997) Stretch-activated ion channels in the heart. J Mol Cell Cardiol 29:1511–1523

    CAS  PubMed  Google Scholar 

  10. Hunter PJ, McCulloch AD, Ter Keurs HEDJ (2002) Modelling the mechanical properties of cardiac muscle. Prog Biophys Mol Biol 69:289–331

    Article  Google Scholar 

  11. Isenberg G, Klöckner U (1982) Calcium currents of isolated bovine ventricular myocytes are fast and of large amplitude. Pflugers Arch 395:30–41

    CAS  PubMed  Google Scholar 

  12. Isenberg G, Klöckner U (1982) Calcium tolerant ventricular myocytes prepared by preincubation in a "KB Medium". Pflugers Arch 395:6–18

    CAS  PubMed  Google Scholar 

  13. Janvier NC, Boyett MR (1996) The role of Na-Ca exchange current in the cardiac action potential. Cardiovasc Res 32:69–84

    Article  CAS  PubMed  Google Scholar 

  14. Kamkin A, Kiseleva I, Isenberg G (2000) Stretch-activated currents in ventricular myocytes: amplitude and arrhythmogenic effects increase with hypertrophy. Cardiovasc Res 48:409–420

    CAS  PubMed  Google Scholar 

  15. Kamkin A, Kiseleva I, Wagner KD, Leiterer KP, Theres H, Scholz H, Gunther J, Lab MJ (2000) Mechano-electric feedback in right atrium after left ventricular infarction in rats. J Mol Cell Cardiol 32:465–477

    CAS  PubMed  Google Scholar 

  16. Kazanski V, Isenberg G (2002) Gradients in cytosolic sodium concentration [Na+]c caused by stretch activated currents (guinea-pig ventricular myocytes) (Abstract). Pflugers Arch 443:S348

    Google Scholar 

  17. Kiseleva I, Kamkin A, Wagner K-D, Theres H, Ladhoff A, Scholz H, Günther J, Lab MJ (2000) Mechano-electric feedback after left ventricular infarction in rats. Cardiovasc Res 45:370–378

    CAS  PubMed  Google Scholar 

  18. Lab MJ, (1996) Mechanoelectric feedback (transduction) in heart: concepts and implications. Cardiovasc Res 32:3-14

    CAS  PubMed  Google Scholar 

  19. Lu J, Liang Y, Wang XL (2002) Amiloride and KB-R7943 in outward Na+/Ca2+ exchange current in guinea pig ventricular myocytes. J Cardiovasc Pharmacol 40:106–111

    Article  CAS  PubMed  Google Scholar 

  20. Nazir SA, Lab MJ (1996) Mechanoelectric feedback and atrial arrhythmias. Cardiovasc Res 32:52–61

    CAS  PubMed  Google Scholar 

  21. Petroff MGV, Kim SH, Pepe S, Dessy C, Marbán E, Balligand JL, Sollott SJ (2001) Endogenous nitric oxide mechanisms mediate the stretch dependence of Ca2+ release in cardiomyocytes. Nat Cell Biol 3:867–873

    Article  CAS  PubMed  Google Scholar 

  22. Puglisi JL, Bers DM (2001) LabHEART: an interactive computer model of rabbit ventricular myocyte ion channels and Ca transport. Am J Physiol 281:C2049–C2060

    CAS  Google Scholar 

  23. Sachs F, Morris CE (1998) Mechanosensitive ion channels in nonspecialized cells. Rev Physiol Biochem Pharmacol 132:1-77

    CAS  PubMed  Google Scholar 

  24. Schneider P, Hopp HH, Isenberg G (1991) Ca2+ influx through ATP-gated channels increments Ca2+ i and inactivates I Ca in myocytes from guinea-pig urinary bladder. J Physiol (Lond) 440:479–496

    Google Scholar 

  25. Sigurdson W, Ruknudin A, Sachs F (1992) Calcium imaging of mechanically induced fluxes in tissue- cultured chick heart: role of stretch-activated ion channels. Am J Physiol 262:H1110–H1115

    CAS  PubMed  Google Scholar 

  26. Thijssen VL, Ausma J, Borgers M (2001) Structural remodeling during chronic atrial fibrillation: act of programmed cell survival. Cardiovasc Res 52:14–24

    CAS  PubMed  Google Scholar 

  27. Yang X-C, Sachs F (1989) Block of stretch-activated ion channels in Xenopus oocytes by gadolinium and calcium ions. Science 243:1068–1071

    CAS  PubMed  Google Scholar 

  28. Yang X-C, Sachs F (1990) Characterization of stretch-activated ion channels in Xenopus oocytes. J Physiol (Lond) 431:103–122

    Google Scholar 

  29. Zeng T, Bett GCL, Sachs F (2000) Stretch-activated whole cell currents in adult rat cardiac myocytes. Am J Physiol 278:H548–H557

    CAS  Google Scholar 

Download references

Acknowledgements

The work was supported by the Deutsche Forschungsgemeinschaft TR-02 project A3 and by the Max-Planck-Award of the AvH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerrit Isenberg.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kamkin, A., Kiseleva, I. & Isenberg, G. Ion selectivity of stretch-activated cation currents in mouse ventricular myocytes. Pflugers Arch - Eur J Physiol 446, 220–231 (2003). https://doi.org/10.1007/s00424-003-1018-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-003-1018-y

Keywords

Navigation