Skip to main content
Log in

Functional interaction of CFTR and ENaC in sweat glands

  • CFTR-ENaC Interactions
  • Published:
Pflügers Archiv Aims and scope Submit manuscript

An Erratum to this article was published on 25 August 2007

Abstract.

The cystic fibrosis transmembrane conductance regulator (CFTR) plays a significant role in transepithelial salt absorption as well as secretion by a number of epithelial tissues including sweat glands, airways and intestine. Early studies suggested that in absorption significant cross talk occurs between CFTR Cl channels and epithelial Na+ channels (ENaC). Studies based primarily on cultured cells of the airways and on ex vivo expression systems suggested that activating CFTR inhibits ENaC channels so that activation of CFTR and deactivation of ENaC seem reciprocal. Lack of CFTR Cl conductance (g CFTR) in the plasma membranes was seen to enhance ENaC conductance (g ENaC) and Na+ absorption from the airway surface liquid causing airway pathology in cystic fibrosis (CF). To determine if these events hold true for a purely absorptive epithelium, we investigated the role of CFTR in regulating g ENaC in native human sweat gland ducts. After permeabilizing the basilateral membrane of the duct with α-toxin, the relative activities of ENaC and CFTR in the apical membrane were characterized by correlating the effect of activating CFTR with ENaC function. We found that in contrast to reciprocal activities, activating g CFTR by either cAMP, cGMP or the G-proteins plus 5 mM ATP was accompanied by a concomitant activation, not inhibition, of g ENaC. The activation of g ENaC appeared to be critically dependent on CFTR Cl channel function because removal of Cl from the medium, blockage of CFTR with inhibitor DIDS or the absence of CFTR in the ΔF508 CF ducts prevented activation of g ENaC by cAMP, GMP or G-proteins. Most significantly, g ENaC was dramatically reduced, not increased, in CF as compared to non-CF sweat ducts. These results showed that lack of CFTR in the plasma membranes is not characteristically coupled to elevated ENaC activity or to increased Na+ absorption in CF epithelial cells. Not only are CFTR and ENaC activated together in duct salt absorption, but ENaC activation depends on functioning CFTR. NaCl is poorly absorbed in the CF duct because CFTR activity appears to impose a loss of ENaC activity as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Author information

Authors and Affiliations

Authors

Additional information

Electronic Publication

An erratum to this article is available at http://dx.doi.org/10.1007/s00424-006-0182-2.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reddy, .M., Quinton, .P. Functional interaction of CFTR and ENaC in sweat glands. Pflugers Arch - Eur J Physiol 445, 499–503 (2003). https://doi.org/10.1007/s00424-002-0959-x

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-002-0959-x

Navigation