Skip to main content

Advertisement

Log in

Fat signal fraction assessed with MRI predicts hepatic recurrence following hepatic resection for colorectal liver metastases

  • Original Article
  • Published:
Langenbeck's Archives of Surgery Aims and scope Submit manuscript

Abstract

Purpose

The effect of hepatic steatosis on the development of colorectal liver metastases (CRLM) remains unknown. This study evaluated the usefulness of fat signal fraction assessed with magnetic resonance imaging (MRI) and the effect of hepatic steatosis on hepatic recurrences following initial hepatectomy for CRLM.

Methods

Between January 2013 and December 2019, 64 patients underwent initial hepatectomy for CRLM. The medical records of these patients were reviewed to evaluate the recurrence and survival outcomes.

Results

The fat signal fraction was positively correlated with the nonalcoholic fatty liver disease activity score and liver-spleen ratio. Recurrence following the initial hepatectomy was observed in 48/64 patients, and hepatic recurrence was observed in 30/64 patients. The fat signal fraction was significantly higher in patients with hepatic recurrence after initial hepatectomy. The hepatic recurrence rate was 69.2% in patients with fat signal fraction ≥ 0.0258, which was significantly higher than that in patients with fat signal fraction < 0.0258. Hepatic recurrence-free survival rate was significantly higher in patients with fat signal fraction < 0.0258 than in those with fat signal fraction ≥ 0.0258. Multivariate analyses revealed that fat signal fraction ≥ 0.0258 was an independent risk factor for hepatic recurrence.

Conclusion

The fat signal fraction assessed with MRI was significantly associated with hepatic recurrence following initial hepatectomy for CRLM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The data that support the findings of the present study are available from the corresponding author upon reasonable request.

References

  1. Bray F et al (2018) Global, cancer statistics GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 68:394–424. https://doi.org/10.3322/caac.21492

  2. Manfredi S et al (2006) Epidemiology and management of liver metastases fromcolorectal cancer. Ann Surg 244:254–259. https://doi.org/10.1097/01.sla.0000217629.94941.cf

    Article  PubMed  PubMed Central  Google Scholar 

  3. Hackl C et al (2014) Treatment of colorectal liver metastases in Germany: a ten-year population-based analysis of 5772 cases of primary colorectal adenocarcinoma. BMC Cancer 14:810. https://doi.org/10.1186/1471-2407-14-810

    Article  PubMed  PubMed Central  Google Scholar 

  4. Engstrand J, Nilsson H, Strömberg C, Jonas E, Freedman J (2018) Colorectal cancer liver metastases - a population-based study on incidence, management and survival. BMC Cancer 18:78. https://doi.org/10.1186/s12885-017-3925-x

    Article  PubMed  PubMed Central  Google Scholar 

  5. Margonis GA, Kreis ME, Wang JJ, Kamphues C, Wolfgang CL, Weiss MJ (2020) Impact and clinical usefulness of genetic data in the surgical management of colorectal cancer liver metastasis: a narrative review. Hepatobiliary Surg Nutr 9:705–716. https://doi.org/10.21037/hbsn.2019.10.05

    Article  PubMed  PubMed Central  Google Scholar 

  6. Paget S (1989) The distribution of secondary growths in cancer of the breast. 1889. Cancer Metastasis Rev 8:98–101

    CAS  PubMed  Google Scholar 

  7. Weber CE, Kuo PC (2012) The tumor microenvironment. Surg Oncol 21:172–177. https://doi.org/10.1016/j.suronc.2011.09.001

    Article  PubMed  Google Scholar 

  8. Galindo-Pumarino C, Collado M, Herrera M, Pena C (2021) Tumor microenvironment in metastatic colorectal cancer: the arbitrator in patients’ outcome. Cancers (Basel) 13:1130. https://doi.org/10.3390/cancers13051130

    Article  CAS  Google Scholar 

  9. Zhao J, van Mierlo KMC, Gomez-Ramirez J et al (2017) Systematic review of the influence of chemotherapy-associated liver injury on outcome after partial hepatectomy for colorectal liver metastases. Br J Surg 104:990–1002. https://doi.org/10.1002/bjs.10572

    Article  CAS  PubMed  Google Scholar 

  10. Paternostro R, Sieghart W, Trauner M, Pinter M (2021) Cancer and hepatic steatosis ESMO Open 6:100185. https://doi.org/10.1016/j.esmoop.2021.100185

    Article  CAS  PubMed  Google Scholar 

  11. Doherty DT, Coe PO, Rimmer L, Lapsia S, Krige A, Subar DA (2019) Hepatic steatosis in patients undergoing resection of colorectal liver metastases: a target for prehabilitation? A narrative review. Surg Oncol 30:147–158. https://doi.org/10.1016/j.suronc.2019.07.007

    Article  CAS  PubMed  Google Scholar 

  12. Fernandez FG, Ritter J, Goodwin JW, Linehan DC, Hawkins WG, Strasberg SM (2005) Effect of steatohepatitis associated with irinotecan or oxaliplatin pretreatment on resectability of hepatic colorectal metastases. J Am Coll Surg 200:845–853. https://doi.org/10.1016/j.jamcollsurg.2005.01.024

    Article  PubMed  Google Scholar 

  13. Li Y, Su X, Rohatgi N et al (2020) Hepatic lipids promote liver metastasis. JCI Insight 5:e136215. https://doi.org/10.1172/jci.insight.136215

    Article  PubMed Central  Google Scholar 

  14. Ramos E, Torras J, Llado L, Rafecas A, Serrano T, Lopez-Gordo S, Busquets J, Fabregat J (2016) The influence of steatosis on the short- and long-term results of resection of liver metastases from colorectal carcinoma. HPB (Oxford) 18:389–396. https://doi.org/10.1016/j.hpb.2015.12.002

    Article  Google Scholar 

  15. Narayan RR, Harris JW, Chou JF et al (2020) Prediction of recurrence patterns from hepatic parenchymal disease after resection of colorectal liver metastases. Ann Surg Oncol 27:188–195. https://doi.org/10.1245/s10434-019-07934-3

    Article  PubMed  Google Scholar 

  16. Ma J (2008) Dixon techniques for water and fat imaging. J Magn Reson Imaging 28:543–558. https://doi.org/10.1002/jmri.21492

    Article  PubMed  Google Scholar 

  17. Reeder SB, Sirlin C (2010) Quantification of liver fat with magnetic resonance imaging. Magn Reson Imaging Clin N Am 18:337–357. https://doi.org/10.1016/j.mric.2010.08.013

    Article  PubMed  PubMed Central  Google Scholar 

  18. Dixon WT (1984) Simple proton spectroscopic imaging. Radiology 153:189–194. https://doi.org/10.1148/radiology.153.1.6089263

    Article  CAS  PubMed  Google Scholar 

  19. Onishi H, Theisen D, Dietrich O, Reiser MF, Zech CJ (2014) Hepatic steatosis: effect on hepatocyte enhancement with gadoxetate disodium-enhanced liver MR imaging. J Magn Reson Imaging 39:42–50. https://doi.org/10.1002/jmri.24136

    Article  PubMed  Google Scholar 

  20. Kleiner DE, Brunt EM, Van Natta M et al (2005) Design and validation of a histological scoring system for nonalcoholic fatty liver disease. Hepatology 41:1313–1321. https://doi.org/10.1002/hep.20701

    Article  PubMed  Google Scholar 

  21. Narayan RR, Harris JW, Chou JF et al (2019) Prediction of recurrence patterns from hepatic parenchymal disease after resection of colorectal liver metastases. Ann Surg Oncol 27:188–195. https://doi.org/10.1245/s10434-019-07934-3

    Article  PubMed  PubMed Central  Google Scholar 

  22. Hu X, Marietta A, Dai WX, Li YQ, Ma XJ, Zhang L, Cai SJ, Peng JJ (2020) Prediction of hepatic metastasis and relapse in colorectal cancers based on concordance analyses with liver fibrosis scores. Clin Transl Med 9:13. https://doi.org/10.1186/s40169-020-0264-3

    Article  PubMed  PubMed Central  Google Scholar 

  23. Kondo T, Okabayashi K, Hasegawa H, Tsuruta M, Shigeta K, Kitagawa Y (2016) The impact of hepatic fibrosis on the incidence of liver metastasis from colorectal cancer. Br J Cancer 115:34–39. https://doi.org/10.1038/bjc.2016.155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. VanSaun MN, Lee IK, Washington MK, Matrisian L, Gorden DL (2009) High fat diet induced hepatic steatosis establishes a permissive microenvironment for colorectal metastases and promotes primary dysplasia in a murine model. Am J Pathol 175:355–364. https://doi.org/10.2353/ajpath.2009.080703

    Article  PubMed  PubMed Central  Google Scholar 

  25. Karube H, Masuda H, Hayashi S, Ishii Y, Nemoto N (2000) Fatty liver suppressed the angiogenesis in liver metastatic lesions. Hepatogastroenterology 47:1541–1545

    CAS  PubMed  Google Scholar 

  26. Masaki S, Hashimoto Y, Kunisho S, Kimoto A, Kitadai Y (2020) Fatty change of the liver microenvironment influences the metastatic potential of colorectal cancer. Int J Exp Pathol 101:162–170. https://doi.org/10.1111/iep.12371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Nordlinger B, Quilichini MA, Parc R, Hannoun L, Delva E, Huguet C (1987) Hepatic resection for colorectal liver metastases. Influence on survival of preoperative factors and surgery for recurrences in 80 patients. Ann Surg 205:256–263. https://doi.org/10.1097/00000658-198703000-00007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ambiru S, Miyazaki M, Ito H, Nakagawa K, Shimizu H, Kato A, Nakamura S, Omoto H, Nakajima N (1998) Resection of hepatic and pulmonary metastases in patients with colorectal carcinoma. Cancer 82:274–278. https://doi.org/10.1002/(SICI)1097-0142(19980115)82:2%3c274::AID-CNCR5%3e3.0.CO;2-R

    Article  CAS  PubMed  Google Scholar 

  29. Chua TC, Saxena A, Liauw W, Chu F, Morris DL (2012) Hepatectomy and resection of concomitant extrahepatic disease for colorectal liver metastases–a systematic review. Eur J Cancer 48:1757–1765. https://doi.org/10.1016/j.ejca.2011.10.034

    Article  PubMed  Google Scholar 

  30. Wicherts DA, de Haas RJ, Salloum C, Andreani P, Pascal G, Sotirov D, Adam R, Castaing D, Azoulay D (2013) Repeat hepatectomy for recurrent colorectal metastases. Br J Surg 100:808–818. https://doi.org/10.1002/bjs.9088

    Article  CAS  PubMed  Google Scholar 

  31. Sakamaki Y, Ishida D, Tanaka R (2020) Prognosis of patients with recurrence after pulmonary metastasectomy for colorectal cancer. Gen Thorac Cardiovasc Surg 68:1172–1178. https://doi.org/10.1007/s11748-020-01368-5

    Article  PubMed  Google Scholar 

  32. Oba M, Hasegawa K, Shindoh J, Yamashita S, Sakamoto Y, Makuuchi M, Kokudo N (2016) Survival benefit of repeat resection of successive recurrences after the initial hepatic resection for colorectal liver metastases. Surgery 159:632–640. https://doi.org/10.1016/j.surg.2015.09.003

    Article  PubMed  Google Scholar 

  33. Oba M, Hasegawa K, Matsuyama Y, Shindoh J, Mise Y, Aoki T, Sakamoto Y, Sugawara Y, Makuuchi M, Kokudo N (2014) Discrepancy between recurrence-free survival and overall survival in patients with resectable colorectal liver metastases: a potential surrogate endpoint for time to surgical failure. Ann Surg Oncol 21:1817–1824. https://doi.org/10.1245/s10434-014-3504-1

    Article  PubMed  Google Scholar 

  34. Esterson YB, Grimaldi GM (2018) Radiologic imaging in nonalcoholic fatty liver disease and nonalcoholic steatohepatitis. Clin Liver Dis 22:93–108. https://doi.org/10.1016/j.cld.2017.08.005

    Article  PubMed  Google Scholar 

  35. van Dijk DPJ, Krill M, Farshidfar F et al (2019) Host phenotype is associated with reduced survival independent of tumour biology in patients with colorectal liver metastases. J Cachexia Sarcopenia Muscle 10:123–130. https://doi.org/10.1002/jcsm.12358

    Article  PubMed  Google Scholar 

  36. Liu YW, Lu CC, Chang CD et al (2020) Prognostic value of sarcopenia in patients with colorectal liver metastases undergoing hepatic resection. Sci Rep 10:6459. https://doi.org/10.1038/s41598-020-63644-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kobayashi A, Kaido T, Hamaguchi Y, Okumura S, Shirai H, Kamo N, Yagi S, Taura K, Okajima H, Uemoto S (2018) Impact of visceral adiposity as well as sarcopenic factors on outcomes in patients undergoing liver resection for colorectal liver metastases. World J Surg 42:1180–1191. https://doi.org/10.1007/s00268-017-4255-5

    Article  PubMed  Google Scholar 

  38. Lodewick TM, van Nijnatten TJ, van Dam RM, van Mierlo K, Dello SA, Neumann UP, Olde Damink SW, Dejong CH (2015) Are sarcopenia, obesity and sarcopenic obesity predictive of outcome in patients with colorectal liver metastases? HPB (Oxford) 17:438–446. https://doi.org/10.1111/hpb.12373

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank Dr. Takuro Horikoshi, Department of Diagnostic Radiology and Radiation Oncology, Graduate School of Medicine, Chiba University, for the valuable advice regarding the MRI protocol.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masayuki Ohtsuka.

Ethics declarations

Ethics approval

The retrospective study was performed in accordance with the principles of the Declaration of Helsinki. The study was approved by the Institutional Ethics Committee of the College of Medicine, Chiba University.

Consent to participate

Because of the retrospective nature of the study, informed consent was waived by the Institutional Ethics Committee of the College of Medicine, Chiba University. As an alternative, the opt-out consent was approved by the committee and obtained via our websites, where permission was requested for the use of the participants’ personal information in this study.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sakai, N., Hayano, K., Mishima, T. et al. Fat signal fraction assessed with MRI predicts hepatic recurrence following hepatic resection for colorectal liver metastases. Langenbecks Arch Surg 407, 1981–1989 (2022). https://doi.org/10.1007/s00423-022-02482-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00423-022-02482-z

Keywords

Navigation