Skip to main content

Advertisement

Log in

A retrospective case control study identifies peripheral blood mononuclear cell albumin RNA expression as a biomarker for non-alcoholic fatty liver disease

  • Original Article
  • Published:
Langenbeck's Archives of Surgery Aims and scope Submit manuscript

Abstract

Purpose

Non-alcoholic fatty liver disease (NAFLD) improves after bariatric surgery. The aim of this study was to determine whether peripheral blood mononuclear cell albumin gene expression was related to NAFLD and whether albumin (ALB) and alpha fetoprotein (AFP) expression could be detected in whole blood and visceral adipose tissue.

Methods

Using a retrospective case control study design, RNA isolated from peripheral blood mononuclear cells from patients prior to undergoing bariatric surgery was used for pooled microarray analysis. Quantitative polymerase chain reaction (QPCR) was used to analyze whole blood and visceral adipose tissue. Liver histology was obtained via intra-operative biopsy and clinical data extracted from the electronic health record.

Results

The albumin (ALB) gene was the second most up-regulated found in microarray analysis of peripheral blood mononuclear cell RNA from patients with hepatic lobular inflammation versus normal liver histology. Transcript levels of ALB were significantly different across those with normal (n = 50), steatosis (n = 50), lobular inflammation (n = 50), and peri-sinusoidal fibrosis (n = 50) liver histologies, with lobular inflammation 3.9 times higher than those with normal histology (p < 0.017). Albumin expression levels decreased in 11/13 patients in paired samples obtained prior to and at 1 year after Roux-en-Y gastric bypass surgery. ALB expression could be detected in 23 visceral adipose tissue samples obtained intra-operatively and in 18/19 available paired whole blood samples. No significant correlation was found between ALB expression in visceral adipose tissue and whole blood RNA samples. Alpha fetoprotein expression as a marker of early hepatocytic differentiation was detected in 17/17 available VAT RNA samples, but in only 2/17 whole blood RNA samples.

Conclusion

Albumin RNA expression from blood cells may serve as a biomarker of NAFLD. Albumin and alpha fetoprotein appear to be ubiquitously expressed in visceral adipose tissue in patients with extreme obesity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Neuschwander-Tetri BA, Caldwell SH (2003) Nonalcoholic steatohepatitis: summary of an AASLD single topic conference. Hepatology. 37(5):1202–1219

    PubMed  Google Scholar 

  2. Starley BQ, Calcagno CJ, Harrison SA (2010) Nonalcoholic fatty liver disease and hepatocellular carcinoma: a weighty connection. Hepatology. 51(5):1820–1832

    PubMed  Google Scholar 

  3. Wong RJ, Cheung R, Ahmed A (2014) Nonalcoholic steatohepatitis is the most rapidly growing indication for liver transplantation in patients with hepatocellular carcinoma in the U.S. Hepatology. 59(6):2188–2195

    PubMed  Google Scholar 

  4. Udompap P, Kim D, Kim WR (2015) Current and future burden of chronic nonmalignant liver disease. Clin Gastroenterol Hepatol 13(12):2031–2041

    PubMed  PubMed Central  Google Scholar 

  5. Allen RE, Hughes TD, Ng JL, Ortiz RD, Ghantous MA, Bouhali O et al (2013) Mechanisms behind the immediate effects of roux-en-Y gastric bypass surgery on type 2 diabetes. Theor Biol Med Model 10:45

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Nguyen KT, Korner J (2014) The sum of many parts: potential mechanisms for improvement in glucose homeostasis after bariatric surgery. Curr Diab Rep 14(5):481

    PubMed  PubMed Central  Google Scholar 

  7. Laursen TL, Hagemann CA, Wei C, Kazankov K, Thomsen KL, Knop FK, Grønbæk H (2019) Bariatric surgery in patients with non-alcoholic fatty liver disease - from pathophysiology to clinical effects. World J Hepatol 11(2):138–149

    PubMed  PubMed Central  Google Scholar 

  8. Alizai PH, Wendl J, Roeth AA, Klink CD, Luedde T, Steinhoff I, Neumann UP, Schmeding M, Ulmer F (2015) Functional liver recovery after bariatric surgery--a prospective cohort study with the LiMAx test. Obes Surg 25(11):2047–2053

    PubMed  Google Scholar 

  9. Carpino G, Renzi A, Onori P, Gaudio E (2013) Role of hepatic progenitor cells in nonalcoholic fatty liver disease development: cellular cross-talks and molecular networks. Int J Mol Sci 14(10):20112–20130

    PubMed  PubMed Central  Google Scholar 

  10. Muller C, Petermann D, Pfeffel F, Oesterreicher C, Fugger R (1997) Lack of specificity of albumin-mRNA-positive cells as a marker of circulating hepatoma cells. Hepatology. 25(4):896–899

    CAS  PubMed  Google Scholar 

  11. Gaia S, Olivero A, Smedile A, Ruella M, Abate ML, Fadda M, Rolle E, Omedè P, Bondesan P, Passera R, Risso A, Aragno M, Marzano A, Ciancio A, Rizzetto M, Tarella C (2013) Multiple courses of G-CSF in patients with decompensated cirrhosis: consistent mobilization of immature cells expressing hepatocyte markers and exploratory clinical evaluation. Hepatol Int 7(4):1075–1083

    PubMed  Google Scholar 

  12. Ghaedi M, Duan Y, Zern MA, Revzin A (2014) Hepatic differentiation of human embryonic stem cells on growth factor-containing surfaces. J Tissue Eng Regen Med 8(11):886–895

    CAS  PubMed  Google Scholar 

  13. Zhang W, Li W, Liu B, Wang P, Li W, Zhang H (2012) Efficient generation of functional hepatocyte-like cells from human fetal hepatic progenitor cells in vitro. J Cell Physiol 227(5):2051–2058

    CAS  PubMed  Google Scholar 

  14. Wood GC, Chu X, Manney C, Strodel W, Petrick A, Gabrielsen J et al (2012) An electronic health record-enabled obesity database. BMC Med Inform Decis Mak 12(1):45

    PubMed  PubMed Central  Google Scholar 

  15. Kleiner DE, Brunt EM, Van Natta M, Behling C, Contos MJ, Cummings OW et al (2005) Design and validation of a histological scoring system for nonalcoholic fatty liver disease. Hepatology. 41(6):1313–1321

    PubMed  Google Scholar 

  16. Bogoslovsky T, Wang D, Maric D, Scattergood-Keepper L, Spatz M, Auh S, et al (2013) Cryopreservation and enumeration of human endothelialprogenitor and endothelial cells for clinical trials. J Blood Disord Transfus 4(5): 158

  17. Chu X, Jin Q, Chen H, Wood GC, Petrick A, Strodel W, Gabrielsen J, Benotti P, Mirshahi T, Carey DJ, Still CD, DiStefano J, Gerhard GS (2018) CCL20 is up-regulated in non-alcoholic fatty liver disease fibrosis and is produced by hepatic stellate cells in response to fatty acid loading. J Transl Med 16(1):108

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Ortega FJ, Vilallonga R, Xifra G, Sabater M, Ricart W, Fernandez-Real JM (2016) Bariatric surgery acutely changes the expression of inflammatory and lipogenic genes in obese adipose tissue. Surg Obes Relat Dis 12(2):357–362

    PubMed  Google Scholar 

  19. Gerhard GS, Styer AM, Strodel WE, Roesch SL, Yavorek A, Carey DJ, Wood GC, Petrick AT, Gabrielsen J, Ibele A, Benotti P, Rolston DD, Still CD, Argyropoulos G (2014) Gene expression profiling in subcutaneous, visceral and epigastric adipose tissues of patients with extreme obesity. Int J Obes 38(3):371–378

    CAS  Google Scholar 

  20. Hu C, Zhao L, Li L (2019) Current understanding of adipose-derived mesenchymal stem cell-based therapies in liver diseases. Stem Cell Res Ther 10(1):199

    PubMed  PubMed Central  Google Scholar 

  21. Hafeez S, Ahmed MH (2013) Bariatric surgery as potential treatment for nonalcoholic fatty liver disease: a future treatment by choice or by chance? J Obes 2013:839275

    PubMed  PubMed Central  Google Scholar 

  22. Mattar SG, Velcu LM, Rabinovitz M, Demetris AJ, Krasinskas AM, Barinas-Mitchell E et al (2005) Surgically-induced weight loss significantly improves nonalcoholic fatty liver disease and the metabolic syndrome. Ann Surg 242(4):610–617 discussion 8-20

    PubMed  PubMed Central  Google Scholar 

  23. Mottin CC, Moretto M, Padoin AV, Kupski C, Swarowsky AM, Glock L, Duval V, da Silva JB (2005) Histological behavior of hepatic steatosis in morbidly obese patients after weight loss induced by bariatric surgery. Obes Surg 15(6):788–793

    PubMed  Google Scholar 

  24. Klein S, Mittendorfer B, Eagon JC, Patterson B, Grant L, Feirt N et al (2006) Gastric bypass surgery improves metabolic and hepatic abnormalities associated with nonalcoholic fatty liver disease. Gastroenterology. 130(6):1564–1572

    CAS  PubMed  Google Scholar 

  25. Barker KB, Palekar NA, Bowers SP, Goldberg JE, Pulcini JP, Harrison SA (2006 Feb) Non-alcoholic steatohepatitis: effect of roux-en-Y gastric bypass surgery. Am J Gastroenterol 101(2):368–373

    PubMed  Google Scholar 

  26. Csendes A, Smok G, Burgos AM (2006) Histological findings in the liver before and after gastric bypass. Obes Surg 16(5):607–611

    PubMed  Google Scholar 

  27. de Almeida SR, Rocha PR, Sanches MD, Leite VH, da Silva RA, Diniz MT, Diniz Mde F, Rocha AL (2006) Roux-en-Y gastric bypass improves the nonalcoholic steatohepatitis (NASH) of morbid obesity. Obes Surg 16(3):270–278

    PubMed  Google Scholar 

  28. Furuya CK Jr, de Oliveira CP, de Mello ES, Faintuch J, Raskovski A, Matsuda M et al (2007) Effects of bariatric surgery on nonalcoholic fatty liver disease: preliminary findings after 2 years. J Gastroenterol Hepatol 22(4):510–514

    CAS  PubMed  Google Scholar 

  29. Liu X, Lazenby AJ, Clements RH, Jhala N, Abrams GA (2007) Resolution of nonalcoholic steatohepatits after gastric bypass surgery. Obes Surg 17(4):486–492

    PubMed  Google Scholar 

  30. Weiner RA (2010) Surgical treatment of non-alcoholic steatohepatitis and non-alcoholic fatty liver disease. Dig Dis 28(1):274–279

    CAS  PubMed  Google Scholar 

  31. Moretto M, Kupski C, da Silva VD, Padoin AV, Mottin CC (2012) Effect of bariatric surgery on liver fibrosis. Obes Surg 22(7):1044–1049

    PubMed  Google Scholar 

  32. Ranlov I, Hardt F (1990) Regression of liver steatosis following gastroplasty or gastric bypass for morbid obesity. Digestion. 47(4):208–214

    CAS  PubMed  Google Scholar 

  33. Stratopoulos C, Papakonstantinou A, Terzis I, Spiliadi C, Dimitriades G, Komesidou V, Kitsanta P, Argyrakos T, Hadjiyannakis E (2005) Changes in liver histology accompanying massive weight loss after gastroplasty for morbid obesity. Obes Surg 15(8):1154–1160

    PubMed  Google Scholar 

  34. Dixon JB, Bhathal PS, Hughes NR, O'Brien PE (2004) Nonalcoholic fatty liver disease: improvement in liver histological analysis with weight loss. Hepatology. 39(6):1647–1654

    PubMed  Google Scholar 

  35. Dixon JB, Bhathal PS, O'Brien PE (2006) Weight loss and non-alcoholic fatty liver disease: falls in gamma-glutamyl transferase concentrations are associated with histologic improvement. Obes Surg 16(10):1278–1286

    PubMed  Google Scholar 

  36. Mathurin P, Hollebecque A, Arnalsteen L, Buob D, Leteurtre E, Caiazzo R, Pigeyre M, Verkindt H, Dharancy S, Louvet A, Romon M, Pattou F (2009) Prospective study of the long-term effects of bariatric surgery on liver injury in patients without advanced disease. Gastroenterology. 137(2):532–540

    CAS  PubMed  Google Scholar 

  37. Kral JG, Thung SN, Biron S, Hould FS, Lebel S, Marceau S, Simard S, Marceau P (2004) Effects of surgical treatment of the metabolic syndrome on liver fibrosis and cirrhosis. Surgery. 135(1):48–58

    PubMed  Google Scholar 

  38. Kucia M, Ratajczak J, Reca R, Janowska-Wieczorek A, Ratajczak MZ (2004) Tissue-specific muscle, neural and liver stem/progenitor cells reside in the bone marrow, respond to an SDF-1 gradient and are mobilized into peripheral blood during stress and tissue injury. Blood Cells Mol Dis 32(1):52–57

    CAS  PubMed  Google Scholar 

  39. Chen Y, Xiang LX, Shao JZ, Pan RL, Wang YX, Dong XJ, Zhang GR (2010) Recruitment of endogenous bone marrow mesenchymal stem cells towards injured liver. J Cell Mol Med 14(6B):1494–1508

    PubMed  Google Scholar 

  40. Machado MV, Diehl AM (2016) Pathogenesis of nonalcoholic Steatohepatitis. Gastroenterology. 150(8):1769–1777

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Fakhry TK, Mhaskar R, Schwitalla T, Muradova E, Gonzalvo JP, Murr MM (2019) Bariatric surgery improves nonalcoholic fatty liver disease: a contemporary systematic review and meta-analysis. Surg Obes Relat Dis 15(3):502–511

    PubMed  Google Scholar 

  42. Lee Y, Doumouras AG, Yu J, Brar K, Banfield L, Gmora S, Anvari M, Hong D (2019) Complete resolution of nonalcoholic fatty liver disease after bariatric surgery: a systematic review and meta-analysis. Clin Gastroenterol Hepatol 17(6):1040–1060 e11

    PubMed  Google Scholar 

  43. Sawitza I, Kordes C, Gotze S, Herebian D, Haussinger D (2015) Bile acids induce hepatic differentiation of mesenchymal stem cells. Sci Rep 5:13320

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Cho JG, Lee JH, Hong SH, Lee HN, Kim CM, Kim SY, Yoon KJ, Oh BJ, Kim JH, Jung SY, Asahara T, Kwon SM, Park SG (2015) Tauroursodeoxycholic acid, a bile acid, promotes blood vessel repair by recruiting vasculogenic progenitor cells. Stem Cells 33(3):792–805

    CAS  PubMed  Google Scholar 

  45. Goktas Z, Moustaid-Moussa N, Shen CL, Boylan M, Mo H, Wang S (2013) Effects of bariatric surgery on adipokine-induced inflammation and insulin resistance. Front Endocrinol (Lausanne) 4:69

    Google Scholar 

  46. Jimenez LS, Mendonca Chaim FH, Mendonca Chaim FD, Utrini MP, Gestic MA, Chaim EA et al (2018) Impact of weight regain on the evolution of non-alcoholic fatty liver disease after roux-en-Y gastric bypass: a 3-year follow-up. Obes Surg 28(10):3131–3135

    PubMed  Google Scholar 

  47. Paek HJ, Kim C, Williams SK (2014) Adipose stem cell-based regenerative medicine for reversal of diabetic hyperglycemia. World J Diabetes 5(3):235–243

    PubMed  PubMed Central  Google Scholar 

  48. Nakao N, Nakayama T, Yahata T, Muguruma Y, Saito S, Miyata Y et al (2010) Adipose tissue-derived mesenchymal stem cells facilitate hematopoiesis in vitro and in vivo: advantages over bone marrow-derived mesenchymal stem cells. Am J Pathol 177(2):547–554

    PubMed  PubMed Central  Google Scholar 

  49. Ong WK, Sugii S (2013) Adipose-derived stem cells: fatty potentials for therapy. Int J Biochem Cell Biol 45(6):1083–1086

    CAS  PubMed  Google Scholar 

  50. Baer PC (2014) Adipose-derived mesenchymal stromal/stem cells: an update on their phenotype in vivo and in vitro. World J Stem Cells 6(3):256–265

    PubMed  PubMed Central  Google Scholar 

  51. Baer PC, Geiger H (2012) Adipose-derived mesenchymal stromal/stem cells: tissue localization, characterization, and heterogeneity. Stem Cells Int 2012:812693

    PubMed  PubMed Central  Google Scholar 

  52. Zhao Y, Zhang H (2016) Update on the mechanisms of homing of adipose tissue-derived stem cells. Cytotherapy. 18(7):816–827

    CAS  PubMed  Google Scholar 

  53. De Francesco F, Ricci G, D'Andrea F, Nicoletti GF, Ferraro GA (2015) Human adipose stem cells: from bench to bedside. Tissue Eng Part B Rev 21(6):572–584

    PubMed  Google Scholar 

  54. Lee SW, Chong JU, Min SO, Bak SY, Kim KS (2017) Are adipose-derived stem cells from liver Falciform ligaments another possible source of Mesenchymal stem cells? Cell Transplant 26(5):855–866

    PubMed  PubMed Central  Google Scholar 

  55. Schwartz RE, Fleming HE, Khetani SR, Bhatia SN (2014) Pluripotent stem cell-derived hepatocyte-like cells. Biotechnol Adv 32(2):504–513

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Eguchi A, Feldstein AE (2018) Extracellular vesicles in non-alcoholic and alcoholic fatty liver diseases. Liver Res 2(1):30–34

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the patients and teams of the Temple and Geisinger Bariatric Surgery Programs for their willingness to participate in and support the research.

Funding

This work was supported by the National Institute of Diabetes and Digestive and Kidney Diseases (DK107735).

Author information

Authors and Affiliations

Authors

Contributions

Study conception and design: MAE, RS, CDS, GSG. Acquisition of data: XC, KK, SD, SK, GCW, WS. Analysis and interpretation of data: XC, MAE, RS, CDS, GSG. Drafting of manuscript: GSG. Critical revision of manuscript: XC, MAE, RS, CDS, GSG.

Corresponding author

Correspondence to Glenn S. Gerhard.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Statement of informed consent

Informed consent was obtained from all individual participants included in the study.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. The Institutional Review Boards of Geisinger Clinic and Temple University approved the research.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chu, X., Karasinski, K., Donellan, S. et al. A retrospective case control study identifies peripheral blood mononuclear cell albumin RNA expression as a biomarker for non-alcoholic fatty liver disease. Langenbecks Arch Surg 405, 165–172 (2020). https://doi.org/10.1007/s00423-019-01848-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00423-019-01848-0

Keywords

Navigation