Skip to main content

Advertisement

Log in

Quantitative perfusion assessment of intestinal anastomoses in pigs treated with glucagon-like peptide 2

  • ORIGINAL ARTICLE
  • Published:
Langenbeck's Archives of Surgery Aims and scope Submit manuscript

Abstract

Purpose

Despite exhaustive research and improvement of techniques, anastomotic leakage remains a frequent complication in gastrointestinal surgery. As leakage is associated with poor perfusion, reliable objective methods to assess anastomotic perfusion are highly demanded. In addition, such methods enable evaluation of interventions that may improve anastomotic perfusion. Glucagon-like peptide 2 (GLP-2) is an enteroendocrine hormone that regulates mid-gut perfusion. In the present study, we aimed to explore if quantitative perfusion assessment with indocyanine green (q-ICG) could detect an increase in porcine anastomotic perfusion after treatment with GLP-2.

Methods

Nineteen pigs had two small bowel resections followed by anastomosis. Blinded to all investigators, animals were randomized to receive GLP-2 or placebo. Anastomotic perfusion was assessed at baseline, 30 min after injection of GLP-2/placebo, and after 5 days of treatment. Anastomotic strength and healing were evaluated by bursting pressure and histology.

Results

Q-ICG detected a significantly higher increase in anastomotic perfusion (p < 0.05) in animals treated with GLP-2, compared with placebo. No significant differences in anastomotic strength or healing were found.

Conclusions

Q-ICG is a promising tool for perfusion assessment in gastrointestinal surgery and opens new opportunities in research of factors that may influence anastomotic healing, but further research is warranted to evaluate the effects of GLP-2 on anastomotic healing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Markar S, Gronnier C, Duhamel A, Mabrut JY, Bail JP, Carrere N, Lefevre JH, Brigand C, Vaillant JC, Adham M, Msika S, Demartines N, Nakadi IE, Meunier B, Collet D, Mariette C, FREGAT (French Eso-Gastric Tumors) working group, FRENCH (Fédération de Recherche EN CHirurgie), and AFC (Association Française de Chirurgie) (2015) The impact of severe anastomotic leak on long-term survival and Cancer recurrence after surgical resection for esophageal malignancy. Ann Surg 262:972–980

    Article  Google Scholar 

  2. Mirnezami A, Mirnezami R, Chandrakumaran K, Sasapu K, Sagar P, Finan P (2011) Increased local recurrence and reduced survival from colorectal cancer following anastomotic leak: systematic review and meta-analysis. Ann Surg 253:890–899

    Article  Google Scholar 

  3. Krarup PM, Jorgensen LN, Andreasen AH, Harling H, Danish Colorectal Cancer G (2012) A nationwide study on anastomotic leakage after colonic cancer surgery. Color Dis 14:e661–e667

    Article  Google Scholar 

  4. Chadi SA, Fingerhut A, Berho M, DeMeester SR, Fleshman JW, Hyman NH, Margolin DA, Martz JE, McLemore EC, Molena D, Newman MI, Rafferty JF, Safar B, Senagore AJ, Zmora O, Wexner SD (2016) Emerging trends in the etiology, prevention, and treatment of gastrointestinal anastomotic leakage. J Gastrointest Surg 20:2035–2051

    Article  Google Scholar 

  5. Hammond J, Lim S, Wan Y, Gao X, Patkar A (2014) The burden of gastrointestinal anastomotic leaks: an evaluation of clinical and economic outcomes. J Gastrointest Surg 18:1176–1185

    Article  Google Scholar 

  6. Trencheva K, Morrissey KP, Wells M, Mancuso CA, Lee SW, Sonoda T, Michelassi F, Charlson ME, Milsom JW (2013) Identifying important predictors for anastomotic leak after colon and rectal resection: prospective study on 616 patients. Ann Surg 257:108–113

    Article  Google Scholar 

  7. Vignali A, Gianotti L, Braga M, Radaelli G, Malvezzi L, Carlo VD (2000) Altered microperfusion at the rectal stump is predictive for rectal anastomotic leak. Dis Colon Rectum 43:76–82

    Article  CAS  Google Scholar 

  8. Thompson SK, Chang EY, Jobe BA (2006) Clinical review: healing in gastrointestinal anastomoses, part I. Microsurgery 26:131–136

    Article  Google Scholar 

  9. Karliczek A, Harlaar NJ, Zeebregts CJ, Wiggers T, Baas PC, van Dam GM (2009) Surgeons lack predictive accuracy for anastomotic leakage in gastrointestinal surgery. Int J Color Dis 24:569–576

    Article  CAS  Google Scholar 

  10. Jafari MD, Wexner SD, Martz JE et al (2015) Perfusion assessment in laparoscopic left-sided/anterior resection (PILLAR II): a multi-institutional study. J Am Coll Surg 220:82–92 e81

    Article  Google Scholar 

  11. Degett TH, Andersen HS, Gogenur I (2016) Indocyanine green fluorescence angiography for intraoperative assessment of gastrointestinal anastomotic perfusion: a systematic review of clinical trials. Langenbeck's Arch Surg 401:767–775

    Article  Google Scholar 

  12. Nerup N, Andersen HS, Ambrus R, Strandby RB, Svendsen MBS, Madsen MH, Svendsen LB, Achiam MP (2017) Quantification of fluorescence angiography in a porcine model. Langenbeck's Arch Surg 402:655–662

    Article  Google Scholar 

  13. Nerup N, Knudsen KBK, Ambrus R, Svendsen MBS, Thymann T, Ifaoui IBR, Svendsen LB, Achiam MP (2017) Reproducibility and reliability of repeated quantitative fluorescence angiography. Surg Technol Int 31:35–39

    PubMed  Google Scholar 

  14. Nerup N, Ambrus R, Lindhe J, Achiam MP, Jeppesen PB, Svendsen LB (2017) The effect of glucagon-like peptide-1 and glucagon-like peptide-2 on microcirculation: a systematic review. Microcirculation. https://doi.org/10.1111/micc.12367

  15. Guan X, Karpen HE, Stephens J, Bukowski JT, Niu S, Zhang G, Stoll B, Finegold MJ, Holst JJ, Hadsell DL, Nichols BL, Burrin DG (2006) GLP-2 receptor localizes to enteric neurons and endocrine cells expressing vasoactive peptides and mediates increased blood flow. Gastroenterology 130:150–164

    Article  CAS  Google Scholar 

  16. Kilkenny C, Browne WJ, Cuthill IC, Emerson M, Altman DG (2010) Improving bioscience research reporting: the ARRIVE guidelines for reporting animal research. PLoS Biol 8:e1000412

    Article  Google Scholar 

  17. Sealed Envelope (2016) [Cited 2016 28.10]; Available from: https://www.sealedenvelope.com/

  18. Renz BW, Leitner K, Odermatt E, Worthley DL, Angele MK, Jauch KW, Lang RA (2014) PVA gel as a potential adhesion barrier: a safety study in a large animal model of intestinal surgery. Langenbeck's Arch Surg 399:349–357

    Article  Google Scholar 

  19. Zuhlke HV, Lorenz EM, Straub EM, Savvas V (1990) Pathophysiology and classification of adhesions. Langenbecks Arch Chir Suppl II Verh Dtsch Ges Chir 1990:1009–16

  20. Goto T, Kawasaki K, Fujino Y, Kanemitsu K, Kamigaki T, Kuroda D, Suzuki Y, Kuroda Y (2007) Evaluation of the mechanical strength and patency of functional end-to-end anastomoses. Surg Endosc 21:1508–1511

    Article  CAS  Google Scholar 

  21. Hartmann B, Johnsen AH, Orskov C et al (2000) Structure, measurement, and secretion of human glucagon-like peptide-2. Peptides 21:73–80

    Article  CAS  Google Scholar 

  22. Attard JA, Raval MJ, Martin GR et al (2005) The effects of systemic hypoxia on colon anastomotic healing: an animal model. Dis Colon Rectum 48:1460–1470

    Article  Google Scholar 

  23. Diana M, Halvax P, Dallemagne B, Nagao Y, Diemunsch P, Charles AL, Agnus V, Soler L, Demartines N, Lindner V, Geny B, Marescaux J (2014) Real-time navigation by fluorescence-based enhanced reality for precise estimation of future anastomotic site in digestive surgery. Surg Endosc 28:3108–3118

    Article  Google Scholar 

  24. Diana M, Noll E, Diemunsch P, Dallemagne B, Benahmed MA, Agnus V, Soler L, Barry B, Namer IJ, Demartines N, Charles AL, Geny B, Marescaux J (2014) Enhanced-reality video fluorescence: a real-time assessment of intestinal viability. Ann Surg 259:700–707

    Article  Google Scholar 

  25. Diana M, Agnus V, Halvax P, Liu YY, Dallemagne B, Schlagowski AI, Geny B, Diemunsch P, Lindner V, Marescaux J (2015) Intraoperative fluorescence-based enhanced reality laparoscopic real-time imaging to assess bowel perfusion at the anastomotic site in an experimental model. Br J Surg 102:e169–e176

    Article  CAS  Google Scholar 

  26. Kudszus S, Roesel C, Schachtrupp A, Hoer JJ (2010) Intraoperative laser fluorescence angiography in colorectal surgery: a noninvasive analysis to reduce the rate of anastomotic leakage. Langenbeck's Arch Surg 395:1025–1030

    Article  Google Scholar 

  27. Matsui A, Winer JH, Laurence RG, Frangioni JV (2011) Predicting the survival of experimental ischaemic small bowel using intraoperative near-infrared fluorescence angiography. Br J Surg 98:1725–1734

    Article  CAS  Google Scholar 

  28. Mucke T, Reeps C, Wolff KD et al (2013) Objective qualitative and quantitative assessment of blood flow with near-infrared angiography in microvascular anastomoses in the rat model. Microsurgery 33:287–296

    Article  Google Scholar 

  29. Jansen SM, de Bruin DM, van Berge Henegouwen MI et al (2018) Optical techniques for perfusion monitoring of the gastric tube after esophagectomy: a review of technologies and thresholds. Dis Esophagus 31(6). https://doi.org/10.1093/dote/dox161

  30. Ambrus R, Strandby RB, Svendsen LB, Achiam MP, Steffensen JF, Søndergaard Svendsen MB (2016) Laser speckle contrast imaging for monitoring changes in microvascular blood flow. Eur Surg Res 56:87–96

    Article  Google Scholar 

  31. Kaska M, Blazej S, Turek Z, Ryska A, Jegorov B, Radochova V, Bezouska J, Paral J (2018) The effect of three different surgical techniques for colon anastomosis on regional postoperative microperfusion: laser Doppler Flowmetry study in pigs. Clin Hemorheol Microcirc 68:61–70

    Article  Google Scholar 

  32. Bremholm L, Hornum M, Henriksen BM, Larsen S, Holst JJ (2009) Glucagon-like peptide-2 increases mesenteric blood flow in humans. Scand J Gastroenterol 44:314–319

    Article  CAS  Google Scholar 

  33. Ris F, Yeung T, Hompes R, Mortensen NJ (2015) Enhanced reality and intraoperative imaging in colorectal surgery. Clin Colon Rectal Surg 28:158–164

    Article  Google Scholar 

  34. Sherwinter DA, Gallagher J, Donkar T (2013) Intra-operative transanal near infrared imaging of colorectal anastomotic perfusion: a feasibility study. Color Dis 15:91–96

    Article  CAS  Google Scholar 

  35. Okamoto K, Muguruma N, Kimura T, Yano H, Imoto Y, Takagawa M, Kaji M, Aoki R, Sato Y, Okamura S, Kusaka Y, Ito S (2005) A novel diagnostic method for evaluation of vascular lesions in the digestive tract using infrared fluorescence endoscopy. Endoscopy 37:52–57

    Article  CAS  Google Scholar 

  36. Redstone HA, Buie WD, Hart DA, Wallace L, Hornby PJ, Sague S, Holst JJ, Sigalet DL (2010) The effect of glucagon-like Peptide-2 receptor agonists on colonic anastomotic wound healing. Gastroenterol Res Pract 2010:1–12

    Article  Google Scholar 

  37. He J, Ahuja N, Makary MA, Cameron JL, Eckhauser FE, Choti MA, Hruban RH, Pawlik TM, Wolfgang CL (2014) 2564 resected periampullary adenocarcinomas at a single institution: trends over three decades. HPB (Oxford) 16:83–90

    Article  Google Scholar 

  38. Bassi C, Dervenis C, Butturini G, Fingerhut A, Yeo C, Izbicki J, Neoptolemos J, Sarr M, Traverso W, Buchler M, International Study Group on Pancreatic Fistula Definition (2005) Postoperative pancreatic fistula: an international study group (ISGPF) definition. Surgery 138:8–13

    Article  Google Scholar 

  39. Russell W, Burch R (1959) The principles of humane experimental technique. Methuen and co., London

  40. Ohi M, Toiyama Y, Mohri Y, Saigusa S, Ichikawa T, Shimura T, Yasuda H, Okita Y, Yoshiyama S, Kobayashi M, Araki T, Inoue Y, Kusunoki M (2017) Prevalence of anastomotic leak and the impact of indocyanine green fluorescein imaging for evaluating blood flow in the gastric conduit following esophageal cancer surgery. Esophagus 14:351–359

    Article  Google Scholar 

  41. Protyniak B, Dinallo AM, Boyan WP Jr, Dressner RM, Arvanitis ML (2015) Intraoperative indocyanine green fluorescence angiography--an objective evaluation of anastomotic perfusion in colorectal surgery. Am Surg 81:580–584

    PubMed  Google Scholar 

  42. Armstrong G, Croft J, Corrigan N, Brown JM, Goh V, Quirke P, Hulme C, Tolan D, Kirby A, Cahill R, O'Connell PR, Miskovic D, Coleman M, Jayne D (2018) IntAct: intraoperative fluorescence angiography (IFA) to prevent anastomotic leak in rectal Cancer surgery: a randomised controlled trial. Color Dis 20:O226–O234

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Authors sincerely thank Lars Thim, Ph.D., DMSci, Novo Nordisk, Denmark for providing the GLP-2 analog (NNCD 0103-0000-0066). Furthermore, we thank Professor Palle Bekker Jeppesen, Ph.D., DMSci, Department of Medical Gastroenterology, Rigshospitalet, Denmark for invaluable advice during the study design.

Funding

The study was sponsored by donations from private foundations: Mogens Andresen fonden, Civilingeniør Johannes Elmqvist Ormstrup og Hustru Grete Omstrups Fond, and Fabrikant Frands Køhler Nielsens og Hustrus Mindelegat. Sponsors had no role in study design, interpretation of results or any other part of the study.

Author information

Authors and Affiliations

Authors

Contributions

• Study conception and design: NN, LBS, MPA.

• Acquisition of data: NN, LLR, RBS, CE, MBS, JP, GLW, BH, LBS, MPA.

• Analysis and interpretation of data: NN, MBS, JP, GLW, BH, LBS, MPA.

• Drafting of the manuscript: NN.

• Critical revision and final approval of the manuscript: NN, LLR, RBS, CE, MBS, JP, GLW, BH, LBS, MPA.

Corresponding author

Correspondence to Nikolaj Nerup.

Ethics declarations

The study followed the Danish and European Union legislation on animal experimentation and was approved by the Danish Animal Experimentation Council (#2016-15-0201-01015).

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. All procedures performed in studies involving animals were in accordance with the ethical standards of the institution or practice at which the studies were conducted.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nerup, N., Ring, L.L., Strandby, R.B. et al. Quantitative perfusion assessment of intestinal anastomoses in pigs treated with glucagon-like peptide 2. Langenbecks Arch Surg 403, 881–889 (2018). https://doi.org/10.1007/s00423-018-1718-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00423-018-1718-6

Keywords

Navigation