Advertisement

Langenbeck's Archives of Surgery

, Volume 403, Issue 2, pp 151–194 | Cite as

Can we better predict the biologic behavior of incidental IPMN? A comprehensive analysis of molecular diagnostics and biomarkers in intraductal papillary mucinous neoplasms of the pancreas

  • Kiara A. Tulla
  • Ajay V. Maker
REVIEW ARTICLE

Abstract

Purpose

Predicting the biologic behavior of intraductal papillary mucinous neoplasm (IPMN) remains challenging. Current guidelines utilize patient symptoms and imaging characteristics to determine appropriate surgical candidates. However, the majority of resected cysts remain low-risk lesions, many of which may be feasible to have under surveillance. We herein characterize the most promising and up-to-date molecular diagnostics in order to identify optimal components of a molecular signature to distinguish levels of IPMN dysplasia.

Methods

A comprehensive systematic review of pertinent literature, including our own experience, was conducted based on the PRISMA guidelines.

Results

Molecular diagnostics in IPMN patient tissue, duodenal secretions, cyst fluid, saliva, and serum were evaluated and organized into the following categories: oncogenes, tumor suppressor genes, glycoproteins, markers of the immune response, proteomics, DNA/RNA mutations, and next-generation sequencing/microRNA. Specific targets in each of these categories, and in aggregate, were identified by their ability to both characterize a cyst as an IPMN and determine the level of cyst dysplasia.

Conclusions

Combining molecular signatures with clinical and imaging features in this era of next-generation sequencing and advanced computational analysis will enable enhanced sensitivity and specificity of current models to predict the biologic behavior of IPMN.

Keywords

Intraductal papillary mucinous neoplasm (IPMN) Pancreatic cyst Molecular diagnosis Biomarkers 

Abbreviations

BD

Branch duct

CA19-9

Carbohydrate antigen 19-9

CEA

Carcinoembryonic antigen

CT

Computed tomography

EUS

Endoscopic ultrasound

IPMN

Intraductal papillary mucinous neoplasm

LOH

Loss of heterozygosity

MCN

Mucinous cystic neoplasm

miRNA

MicroRNA

MPD

Main pancreatic duct

NGS

Next-generation sequencing

NPV

Negative predictive value

PDAC

Pancreatic ductal adenocarcinoma

PPV

Positive predictive value

SCA

Serous cystadenoma

SPN

Solid pseudopapillary neoplasm

TIL

Tumor-infiltrating lymphocyte

Notes

Acknowledgements

The authors give thanks to Ms. Helena Vonville for the spreadsheets to guide, organize, and execute the systematic review.

Funding information

Dr. Maker is supported by NIH/NCI K08CA190855.

Compliance with ethical standards

Conflicts of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Supplementary material

423_2017_1644_MOESM1_ESM.docx (33 kb)
ESM 1 (DOCX 32 kb)

References

  1. 1.
    Ohashi K, Murakami Y, Maruyama M, Takekoshi T, Ohta H, Ohashi I (1982) Four cases of “mucin-producing” cancer of the pancreas on specific findings of the papilla Vater. Prog Dig Endosc 20:348–351Google Scholar
  2. 2.
    Klöppel GSE, Longnecker DS, Capella C, Sobin LH, Solcia E (1996) Histological typing of tumours of the exocrine pancreas. World Health Organization international histological classification of tumors, 2nd edn, pp 11–19.  https://doi.org/10.1007/978-3-642-61024-0
  3. 3.
    Springer S, Wang Y, Dal Molin M, Masica DL, Jiao Y, Kinde I, Blackford A, Raman SP, Wolfgang CL, Tomita T, Niknafs N, Douville C, Ptak J, Dobbyn L, Allen PJ, Klimstra DS, Schattner MA, Schmidt CM, Yip-Schneider M, Cummings OW, Brand RE, Zeh HJ, Singhi AD, Scarpa A, Salvia R, Malleo G, Zamboni G, Falconi M, Jang JY, Kim SW, Kwon W, Hong SM, Song KB, Kim SC, Swan N, Murphy J, Geoghegan J, Brugge W, Fernandez-Del Castillo C, Mino-Kenudson M, Schulick R, Edil BH, Adsay V, Paulino J, van Hooft J, Yachida S, Nara S, Hiraoka N, Yamao K, Hijioka S, van der Merwe S, Goggins M, Canto MI, Ahuja N, Hirose K, Makary M, Weiss MJ, Cameron J, Pittman M, Eshleman JR, Diaz LA Jr, Papadopoulos N, Kinzler KW, Karchin R, Hruban RH, Vogelstein B, Lennon AM (2015) A combination of molecular markers and clinical features improve the classification of pancreatic cysts. Gastroenterology 149(6):1501–1510.  https://doi.org/10.1053/j.gastro.2015.07.041 PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Sessa F, Solcia E, Capella C, Bonato M, Scarpa A, Zamboni G, Pellegata NS, Ranzani GN, Rickaert F, Kloppel G (1994) Intraductal papillary-mucinous tumours represent a distinct group of pancreatic neoplasms: an investigation of tumour cell differentiation and K-ras, p53 and c-erbB-2 abnormalities in 26 patients. Virchows Arch 425(4):357–367.  https://doi.org/10.1007/bf00189573 PubMedCrossRefGoogle Scholar
  5. 5.
    Kimura W, Nagai H, Kuroda A, Muto T, Esaki Y (1995) Analysis of small cystic lesions of the pancreas. Int J Pancreatol 18(3):197–206.  https://doi.org/10.1007/BF02784942 PubMedGoogle Scholar
  6. 6.
    Laffan TA, Horton KM, Klein AP, Berlanstein B, Siegelman SS, Kawamoto S, Johnson PT, Fishman EK, Hruban RH (2008) Prevalence of unsuspected pancreatic cysts on MDCT. AJR Am J Roentgenol 191(3):802–807.  https://doi.org/10.2214/AJR.07.3340 PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Andrejevic-Blant S, Kosmahl M, Sipos B, Kloppel G (2007) Pancreatic intraductal papillary-mucinous neoplasms: a new and evolving entity. Virchows Arch 451(5):863–869.  https://doi.org/10.1007/s00428-007-0512-6 PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Vilmann P, Saftoiu A (2006) Endoscopic ultrasound-guided fine needle aspiration biopsy: equipment and technique. J Gastroenterol Hepatol 21(11):1646–1655.  https://doi.org/10.1111/j.1440-1746.2006.04475.x PubMedCrossRefGoogle Scholar
  9. 9.
    Wang H, Chen T, Wang H, Song Y, Li X, Wang J (2013) A systematic review of the physiological and operative severity score for the enumeration of mortality and morbidity and its Portsmouth modification as predictors of post-operative morbidity and mortality in patients undergoing pancreatic surgery. Am J Surg 205(4):466–472.  https://doi.org/10.1016/j.amjsurg.2012.06.011 PubMedCrossRefGoogle Scholar
  10. 10.
    Anand N, Sampath K, Wu BU (2013) Cyst features and risk of malignancy in intraductal papillary mucinous neoplasms of the pancreas: a meta-analysis. Clin Gastroenterol Hepatol 11(8):913–921; quiz e959-960.  https://doi.org/10.1016/j.cgh.2013.02.010 PubMedCrossRefGoogle Scholar
  11. 11.
    Daude M, Muscari F, Buscail C, Carrere N, Otal P, Selves J, Buscail L, Bournet B (2015) Outcomes of nonresected main-duct intraductal papillary mucinous neoplasms of the pancreas. World J Gastroenterol 21(9):2658–2667.  https://doi.org/10.3748/wjg.v21.i9.2658 PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Tanaka M, Fernandez-del Castillo C, Adsay V, Chari S, Falconi M, Jang JY, Kimura W, Levy P, Pitman MB, Schmidt CM, Shimizu M, Wolfgang CL, Yamaguchi K, Yamao K, International Association of Pancreatology (2012) International consensus guidelines 2012 for the management of IPMN and MCN of the pancreas. Pancreatology 12(3):183–197.  https://doi.org/10.1016/j.pan.2012.04.004 PubMedCrossRefGoogle Scholar
  13. 13.
    Adsay V, Mino-Kenudson M, Furukawa T, Basturk O, Zamboni G, Marchegiani G, Bassi C, Salvia R, Malleo G, Paiella S, Wolfgang CL, Matthaei H, Offerhaus GJ, Adham M, Bruno MJ, Reid MD, Krasinskas A, Kloppel G, Ohike N, Tajiri T, Jang KT, Roa JC, Allen P, Fernandez-del Castillo C, Jang JY, Klimstra DS, Hruban RH, Members of Verona Consensus Meeting (2016) Pathologic evaluation and reporting of intraductal papillary mucinous neoplasms of the pancreas and other tumoral intraepithelial neoplasms of pancreatobiliary tract: recommendations of Verona consensus meeting. Ann Surg 263(1):162–177.  https://doi.org/10.1097/SLA.0000000000001173 PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Basturk O, Hong SM, Wood LD, Adsay NV, Albores-Saavedra J, Biankin AV, Brosens LA, Fukushima N, Goggins M, Hruban RH, Kato Y, Klimstra DS, Kloppel G, Krasinskas A, Longnecker DS, Matthaei H, Offerhaus GJ, Shimizu M, Takaori K, Terris B, Yachida S, Esposito I, Furukawa T, Baltimore Consensus M (2015) A revised classification system and recommendations from the Baltimore consensus meeting for neoplastic precursor lesions in the pancreas. Am J Surg Pathol 39(12):1730–1741.  https://doi.org/10.1097/PAS.0000000000000533 PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Al-Haddad MA, Kowalski T, Siddiqui A, Mertz HR, Mallat D, Haddad N, Malhotra N, Sadowski B, Lybik MJ, Patel SN, Okoh E, Rosenkranz L, Karasik M, Golioto M, Linder J, Catalano MF (2015) Integrated molecular pathology accurately determines the malignant potential of pancreatic cysts. Endoscopy 47(2):136–142.  https://doi.org/10.1055/s-0034-1390742 PubMedGoogle Scholar
  16. 16.
    Maker AV, Lee LS, Raut CP, Clancy TE, Swanson RS (2008) Cytology from pancreatic cysts has marginal utility in surgical decision-making. Ann Surg Oncol 15(11):3187-92.  https://doi.org/10.1245/s10434-008-0110-0.
  17. 17.
    Maker AV, Katabi N, Gonen M, DeMatteo RP, D’Angelica MI, Fong Y, Jarnagin WR, Brennan MF, Allen PJ (2011) Pancreatic cyst fluid and serum mucin levels predict dysplasia in intraductal papillary mucinous neoplasms of the pancreas. Ann Surg Oncol 18(1):199–206.  https://doi.org/10.1245/s10434-010-1225-7 PubMedCrossRefGoogle Scholar
  18. 18.
    Maker AV, Katabi N, Qin LX, Klimstra DS, Schattner M, Brennan MF, Jarnagin WR, Allen PJ (2011) Cyst fluid interleukin-1beta (IL1beta) levels predict the risk of carcinoma in intraductal papillary mucinous neoplasms of the pancreas. Clin Cancer Res 17(6):1502–1508.  https://doi.org/10.1158/1078-0432.CCR-10-1561 PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Maker AV, Carrara S, Jamieson NB, Pelaez-Luna M, Lennon AM, Dal Molin M, Scarpa A, Frulloni L, Brugge WR (2015) Cyst fluid biomarkers for intraductal papillary mucinous neoplasms of the pancreas: a critical review from the international expert meeting on pancreatic branch-duct-intraductal papillary mucinous neoplasms. J Am Coll Surg 220(2):243–253.  https://doi.org/10.1016/j.jamcollsurg.2014.11.001 PubMedCrossRefGoogle Scholar
  20. 20.
    Jang JY, Park YC, Song YS, Lee SE, Hwang DW, Lim CS, Lee HE, Kim WH, Kim SW (2009) Increased K-ras mutation and expression of S100A4 and MUC2 protein in the malignant intraductal papillary mucinous tumor of the pancreas. J Hepato-Biliary-Pancreat Surg 16(5):668–674.  https://doi.org/10.1007/s00534-009-0105-7 CrossRefGoogle Scholar
  21. 21.
    Z’Graggen K, Rivera JA, Compton CC, Pins M, Werner J, Fernandez-del Castillo C, Rattner DW, Lewandrowski KB, Rustgi AK, Warshaw AL (1997) Prevalence of activating K-ras mutations in the evolutionary stages of neoplasia in intraductal papillary mucinous tumors of the pancreas. Ann Surg 226(4):491–498; discussion 498-500.  https://doi.org/10.1097/00000658-199710000-00010 PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Nissim S, Idos GE, Wu B (2012) Genetic markers of malignant transformation in intraductal papillary mucinous neoplasm of the pancreas: a meta-analysis. Pancreas 41(8):1195–1205.  https://doi.org/10.1097/MPA.0b013e3182580fb4 PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Tan MC, Basturk O, Brannon AR, Bhanot U, Scott SN, Bouvier N, LaFemina J, Jarnagin WR, Berger MF, Klimstra D, Allen PJ (2015) GNAS and KRAS mutations define separate progression pathways in intraductal papillary mucinous neoplasm-associated carcinoma. J Am Coll Surg 220(5):845–854 e841.  https://doi.org/10.1016/j.jamcollsurg.2014.11.029 PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Hosoda W, Sasaki E, Murakami Y, Yamao K, Shimizu Y, Yatabe Y (2015) GNAS mutation is a frequent event in pancreatic intraductal papillary mucinous neoplasms and associated adenocarcinomas. Virchows Arch 466(6):665–674.  https://doi.org/10.1007/s00428-015-1751-6 PubMedCrossRefGoogle Scholar
  25. 25.
    Singhi AD, Nikiforova MN, Fasanella KE, McGrath KM, Pai RK, Ohori NP, Bartholow TL, Brand RE, Chennat JS, Lu X, Papachristou GI, Slivka A, Zeh HJ, Zureikat AH, Lee KK, Tsung A, Mantha GS, Khalid A (2014) Preoperative GNAS and KRAS testing in the diagnosis of pancreatic mucinous cysts. Clin Cancer Res 20(16):4381–4389.  https://doi.org/10.1158/1078-0432.CCR-14-0513 PubMedCrossRefGoogle Scholar
  26. 26.
    Wu J, Matthaei H, Maitra A, Dal Molin M, Wood LD, Eshleman JR, Goggins M, Canto MI, Schulick RD, Edil BH, Wolfgang CL, Klein AP, Diaz LA Jr., Allen PJ, Schmidt CM, Kinzler KW, Papadopoulos N, Hruban RH, Vogelstein B (2011) Recurrent GNAS mutations define an unexpected pathway for pancreatic cyst development. Sci Transl Med 3 (92):92ra66.  https://doi.org/10.1126/scitranslmed.3002543
  27. 27.
    Nikiforova MN, Khalid A, Fasanella KE, McGrath KM, Brand RE, Chennat JS, Slivka A, Zeh HJ, Zureikat AH, Krasinskas AM, Ohori NP, Schoedel KE, Navina S, Mantha GS, Pai RK, Singhi AD (2013) Integration of KRAS testing in the diagnosis of pancreatic cystic lesions: a clinical experience of 618 pancreatic cysts. Mod Pathol 26(11):1478–1487.  https://doi.org/10.1038/modpathol.2013.91 PubMedCrossRefGoogle Scholar
  28. 28.
    Kitago M, Ueda M, Aiura K, Suzuki K, Hoshimoto S, Takahashi S, Mukai M, Kitajima M (2004) Comparison of K-ras point mutation distributions in intraductal papillary-mucinous tumors and ductal adenocarcinoma of the pancreas. Int J Cancer 110(2):177–182.  https://doi.org/10.1002/ijc.20084 PubMedCrossRefGoogle Scholar
  29. 29.
    Eshleman JR, Norris AL, Sadakari Y, Debeljak M, Borges M, Harrington C, Lin E, Brant A, Barkley T, Almario JA, Topazian M, Farrell J, Syngal S, Lee JH, Yu J, Hruban RH, Kanda M, Canto MI, Goggins M (2015) KRAS and guanine nucleotide-binding protein mutations in pancreatic juice collected from the duodenum of patients at high risk for neoplasia undergoing endoscopic ultrasound. Clin Gastroenterol Hepatol 13(5):963–969 e964.  https://doi.org/10.1016/j.cgh.2014.11.028 PubMedCrossRefGoogle Scholar
  30. 30.
    Bournet B, Vignolle-Vidoni A, Grand D, Roques C, Breibach F, Cros J, Muscari F, Carrere N, Selves J, Cordelier P, Buscail L (2016) Endoscopic ultrasound-guided fine-needle aspiration plus KRAS and GNAS mutation in malignant intraductal papillary mucinous neoplasm of the pancreas. Endosc Int Open 4(12):E1228–E1235.  https://doi.org/10.1055/s-0042-117216 PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Berger AW, Schwerdel D, Costa IG, Hackert T, Strobel O, Lam S, Barth TF, Schroppel B, Meining A, Buchler MW, Zenke M, Hermann PC, Seufferlein T, Kleger A (2016) Detection of hot-spot mutations in circulating cell-free DNA from patients with intraductal papillary mucinous neoplasms of the pancreas. Gastroenterology 151(2):267–270.  https://doi.org/10.1053/j.gastro.2016.04.034 PubMedCrossRefGoogle Scholar
  32. 32.
    Yang S, Che SP, Kurywchak P, Tavormina JL, Gansmo LB, Correa de Sampaio P, Tachezy M, Bockhorn M, Gebauer F, Haltom AR, Melo SA, LeBleu VS, Kalluri R (2017) Detection of mutant KRAS and TP53 DNA in circulating exosomes from healthy individuals and patients with pancreatic cancer. Cancer Biol Ther 18(3):158–165.  https://doi.org/10.1080/15384047.2017.1281499 PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Kadayifci A, Atar M, Wang JL, Forcione DG, Casey BW, Pitman MB, Brugge WR (2017) Value of adding GNAS testing to pancreatic cyst fluid KRAS and carcinoembryonic antigen analysis for the diagnosis of intraductal papillary mucinous neoplasms. Dig Endosc 29(1):111–117.  https://doi.org/10.1111/den.12710 PubMedCrossRefGoogle Scholar
  34. 34.
    Ideno N, Ohtsuka T, Matsunaga T, Kimura H, Watanabe Y, Tamura K, Aso T, Aishima S, Miyasaka Y, Ohuchida K, Ueda J, Takahata S, Oda Y, Mizumoto K, Tanaka M (2015) Clinical significance of GNAS mutation in intraductal papillary mucinous neoplasm of the pancreas with concomitant pancreatic ductal adenocarcinoma. Pancreas 44(2):311–320.  https://doi.org/10.1097/MPA.0000000000000258 PubMedCrossRefGoogle Scholar
  35. 35.
    Kanda M, Knight S, Topazian M, Syngal S, Farrell J, Lee J, Kamel I, Lennon AM, Borges M, Young A, Fujiwara S, Seike J, Eshleman J, Hruban RH, Canto MI, Goggins M (2013) Mutant GNAS detected in duodenal collections of secretin-stimulated pancreatic juice indicates the presence or emergence of pancreatic cysts. Gut 62(7):1024–1033.  https://doi.org/10.1136/gutjnl-2012-302823 PubMedCrossRefGoogle Scholar
  36. 36.
    Katso R, Okkenhaug K, Ahmadi K, White S, Timms J, Waterfield MD (2001) Cellular function of phosphoinositide 3-kinases: implications for development, homeostasis, and cancer. Annu Rev Cell Dev Biol 17(1):615–675.  https://doi.org/10.1146/annurev.cellbio.17.1.615 PubMedCrossRefGoogle Scholar
  37. 37.
    Kuboki Y, Shimizu K, Hatori T, Yamamoto M, Shibata N, Shiratori K, Furukawa T (2015) Molecular biomarkers for progression of intraductal papillary mucinous neoplasm of the pancreas. Pancreas 44(2):227–235.  https://doi.org/10.1097/MPA.0000000000000253 PubMedCrossRefGoogle Scholar
  38. 38.
    Schonleben F, Allendorf JD, Qiu W, Li X, Ho DJ, Ciau NT, Fine RL, Chabot JA, Remotti HE, GH S (2008) Mutational analyses of multiple oncogenic pathways in intraductal papillary mucinous neoplasms of the pancreas. Pancreas 36(2):168–172.  https://doi.org/10.1097/MPA.0b013e318158a4d2 PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Schonleben F, Qiu W, Remotti HE, Hohenberger W, GH S (2008) PIK3CA, KRAS, and BRAF mutations in intraductal papillary mucinous neoplasm/carcinoma (IPMN/C) of the pancreas. Langenbeck’s Arch Surg 393(3):289–296.  https://doi.org/10.1007/s00423-008-0285-7 CrossRefGoogle Scholar
  40. 40.
    Hashimoto Y, Murakami Y, Uemura K, Hayashidani Y, Sudo T, Ohge H, Fukuda E, Shimamoto F, Sueda T, Hiyama E (2008) Telomere shortening and telomerase expression during multistage carcinogenesis of intraductal papillary mucinous neoplasms of the pancreas. J Gastrointest Surg 12(1):17–28; discussion 28-19.  https://doi.org/10.1007/s11605-007-0383-9 PubMedCrossRefGoogle Scholar
  41. 41.
    Jang KT, Lee KT, Lee JG, Choi SH, Heo JS, Choi DW, Ahn G (2007) Immunohistochemical expression of sonic hedgehog in intraductal papillary mucinous tumor of the pancreas. Appl Immunohistochem Mol Morphol 15(3):294–298.  https://doi.org/10.1097/01.pai.0000213132.71041.da PubMedCrossRefGoogle Scholar
  42. 42.
    Ohuchida K, Mizumoto K, Fujita H, Yamaguchi H, Konomi H, Nagai E, Yamaguchi K, Tsuneyoshi M, Tanaka M (2006) Sonic hedgehog is an early developmental marker of intraductal papillary mucinous neoplasms: clinical implications of mRNA levels in pancreatic juice. J Pathol 210(1):42–48.  https://doi.org/10.1002/path.2019 PubMedCrossRefGoogle Scholar
  43. 43.
    Satoh K, Kanno A, Hamada S, Hirota M, Umino J, Masamune A, Egawa S, Motoi F, Unno M, Shimosegawa T (2008) Expression of sonic hedgehog signaling pathway correlates with the tumorigenesis of intraductal papillary mucinous neoplasm of the pancreas. Oncol Rep 19(5):1185–1190PubMedGoogle Scholar
  44. 44.
    Sugiyama Y, Sasajima J, Mizukami Y, Koizumi K, Kawamoto T, Ono Y, Karasaki H, Tanabe H, Fujiya M, Kohgo Y (2016) Gli2 protein expression level is a feasible marker of ligand-dependent hedgehog activation in pancreatic neoplasms. Pol J Pathol 2:136–144.  https://doi.org/10.5114/pjp.2016.61449 CrossRefGoogle Scholar
  45. 45.
    Hong SM, Park JY, Hruban RH, Goggins M (2011) Molecular signatures of pancreatic cancer. Arch Pathol Lab Med 135(6):716–727.  https://doi.org/10.1043/2010-0566-RA.1 PubMedPubMedCentralGoogle Scholar
  46. 46.
    Abe K, Suda K, Arakawa A, Yamasaki S, Sonoue H, Mitani K, Nobukawa B (2007) Different patterns of p16INK4A and p53 protein expressions in intraductal papillary-mucinous neoplasms and pancreatic intraepithelial neoplasia. Pancreas 34(1):85–91.  https://doi.org/10.1097/01.mpa.0000240608.56806.0a PubMedCrossRefGoogle Scholar
  47. 47.
    Miyasaka Y, Nagai E, Yamaguchi H, Fujii K, Inoue T, Ohuchida K, Yamada T, Mizumoto K, Tanaka M, Tsuneyoshi M (2007) The role of the DNA damage checkpoint pathway in intraductal papillary mucinous neoplasms of the pancreas. Clin Cancer Res 13(15 Pt 1):4371–4377.  https://doi.org/10.1158/1078-0432.CCR-07-0032 PubMedCrossRefGoogle Scholar
  48. 48.
    Wada K (2002) p16 and p53 gene alterations and accumulations in the malignant evolution of intraductal papillary-mucinous tumors of the pancreas. J Hepato-Biliary-Pancreat Surg 9(1):76–85.  https://doi.org/10.1007/s005340200007 CrossRefGoogle Scholar
  49. 49.
    Kanda M, Sadakari Y, Borges M, Topazian M, Farrell J, Syngal S, Lee J, Kamel I, Lennon AM, Knight S, Fujiwara S, Hruban RH, Canto MI, Goggins M (2013) Mutant TP53 in duodenal samples of pancreatic juice from patients with pancreatic cancer or high-grade dysplasia. Clin Gastroenterol Hepatol 11(6):719–730 e715.  https://doi.org/10.1016/j.cgh.2012.11.016 PubMedCrossRefGoogle Scholar
  50. 50.
    Yu J, Sadakari Y, Shindo K, Suenaga M, Brant A, Almario JAN, Borges M, Barkley T, Fesharakizadeh S, Ford M, Hruban RH, Shin EJ, Lennon AM, Canto MI, Goggins M (2017) Digital next-generation sequencing identifies low-abundance mutations in pancreatic juice samples collected from the duodenum of patients with pancreatic cancer and intraductal papillary mucinous neoplasms. Gut 66(9):1677–1687.  https://doi.org/10.1136/gutjnl-2015-311166 PubMedCrossRefGoogle Scholar
  51. 51.
    Sasaki SYH, Kaneto H, Ozeki I, Adachi Y, Takagi H, Matsumoto T, Itoh H, Nagakawa T, Miyakawa H, Muraoka S, Fujinaga A, Suga T, Satoh M, Itoh F, Endo T, Imai K (2003) Differential roles of alterations of p53, p16, and SMAD4 expression in the progression of intraductal papillary-mucinous tumors of the pancreas. Oncol Rep 10(1):21–25PubMedGoogle Scholar
  52. 52.
    Jones M, Zheng Z, Wang J, Dudley J, Albanese E, Kadayifci A, Dias-Santagata D, Le L, Brugge WR, Fernandez-del Castillo C, Mino-Kenudson M, Iafrate AJ, Pitman MB (2016) Impact of next-generation sequencing on the clinical diagnosis of pancreatic cysts. Gastrointest Endosc 83(1):140–148.  https://doi.org/10.1016/j.gie.2015.06.047 PubMedCrossRefGoogle Scholar
  53. 53.
    Biankin AVBS, Kench JG, Morey AL, Lee CS, Head DRER, Hugh TB, Henshall SM, Sutherland RL (2002) Aberrant p16(INK4A) and DPC4/Smad4 expression in intraductal papillary mucinous tumours of the pancreas is associated with invasive ductal adenocarcinoma. Gut 50(6):861–868.  https://doi.org/10.1136/gut.50.6.861 PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Dal Molin M, Hong SM, Hebbar S, Sharma R, Scrimieri F, de Wilde RF, Mayo SC, Goggins M, Wolfgang CL, Schulick RD, Lin MT, Eshleman JR, Hruban RH, Maitra A, Matthaei H (2012) Loss of expression of the SWI/SNF chromatin remodeling subunit BRG1/SMARCA4 is frequently observed in intraductal papillary mucinous neoplasms of the pancreas. Hum Pathol 43(4):585–591.  https://doi.org/10.1016/j.humpath.2011.06.009 PubMedCrossRefGoogle Scholar
  55. 55.
    Jones S, Zhang X, Parsons DW, Lin JC, Leary RJ, Angenendt P, Mankoo P, Carter H, Kamiyama H, Jimeno A, Hong SM, Fu B, Lin MT, Calhoun ES, Kamiyama M, Walter K, Nikolskaya T, Nikolsky Y, Hartigan J, Smith DR, Hidalgo M, Leach SD, Klein AP, Jaffee EM, Goggins M, Maitra A, Iacobuzio-Donahue C, Eshleman JR, Kern SE, Hruban RH, Karchin R, Papadopoulos N, Parmigiani G, Vogelstein B, Velculescu VE, Kinzler KW (2008) Core signaling pathways in human pancreatic cancers revealed by global genomic analyses. Science 321(5897):1801–1806.  https://doi.org/10.1126/science.1164368 PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Jiang X, Hao HX, Growney JD, Woolfenden S, Bottiglio C, Ng N, Lu B, Hsieh MH, Bagdasarian L, Meyer R, Smith TR, Avello M, Charlat O, Xie Y, Porter JA, Pan S, Liu J, McLaughlin ME, Cong F (2013) Inactivating mutations of RNF43 confer Wnt dependency in pancreatic ductal adenocarcinoma. Proc Natl Acad Sci U S A 110(31):12649–12654.  https://doi.org/10.1073/pnas.1307218110 PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Sakamoto H, Kuboki Y, Hatori T, Yamamoto M, Sugiyama M, Shibata N, Shimizu K, Shiratori K, Furukawa T (2015) Clinicopathological significance of somatic RNF43 mutation and aberrant expression of ring finger protein 43 in intraductal papillary mucinous neoplasms of the pancreas. Mod Pathol 28(2):261–267.  https://doi.org/10.1038/modpathol.2014.98 PubMedCrossRefGoogle Scholar
  58. 58.
    Cheng LL, Itahana Y, Lei ZD, Chia NY, Wu Y, Yu Y, Zhang SL, Thike AA, Pandey A, Rozen S, Voorhoeve PM, Yu Q, Tan PH, Bay BH, Itahana K, Tan P (2012) TP53 genomic status regulates sensitivity of gastric cancer cells to the histone methylation inhibitor 3-deazaneplanocin A (DZNep). Clin Cancer Res 18(15):4201–4212.  https://doi.org/10.1158/1078-0432.CCR-12-0036 PubMedCrossRefGoogle Scholar
  59. 59.
    Puppe J, Drost R, Liu X, Joosse SA, Evers B, Cornelissen-Steijger P, Nederlof P, Yu Q, Jonkers J, van Lohuizen M, Pietersen AM (2009) BRCA1-deficient mammary tumor cells are dependent on EZH2 expression and sensitive to polycomb repressive complex 2-inhibitor 3-deazaneplanocin A. Breast Cancer Res 11(4):R63.  https://doi.org/10.1186/bcr2354 PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Chiba T, Suzuki E, Negishi M, Saraya A, Miyagi S, Konuma T, Tanaka S, Tada M, Kanai F, Imazeki F, Iwama A, Yokosuka O (2012) 3-Deazaneplanocin A is a promising therapeutic agent for the eradication of tumor-initiating hepatocellular carcinoma cells. Int J Cancer 130(11):2557–2567.  https://doi.org/10.1002/ijc.26264 PubMedCrossRefGoogle Scholar
  61. 61.
    Kikuchi J, Takashina T, Kinoshita I, Kikuchi E, Shimizu Y, Sakakibara-Konishi J, Oizumi S, Marquez VE, Nishimura M, Dosaka-Akita H (2012) Epigenetic therapy with 3-deazaneplanocin A, an inhibitor of the histone methyltransferase EZH2, inhibits growth of non-small cell lung cancer cells. Lung Cancer 78(2):138–143.  https://doi.org/10.1016/j.lungcan.2012.08.003 PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Kuroki H, Hayashi H, Okabe H, Hashimoto D, Takamori H, Nakahara O, Nakagawa S, Fukushima Y, Chikamoto A, Beppu T, Hirota M, Iyama K, Baba H (2014) EZH2 is associated with malignant behavior in pancreatic IPMN via p27Kip1 downregulation. PLoS One 9(8):e100904.  https://doi.org/10.1371/journal.pone.0100904 PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Hong SM, Omura N, Vincent A, Li A, Knight S, Yu J, Hruban RH, Goggins M (2012) Genome-wide CpG island profiling of intraductal papillary mucinous neoplasms of the pancreas. Clin Cancer Res 18(3):700–712.  https://doi.org/10.1158/1078-0432.CCR-11-1718 PubMedCrossRefGoogle Scholar
  64. 64.
    Satake KKG, Kho I, Chung Y, Umeyama K (1985) Evaluation of serum pancreatic enzymes, carbohydrate antigen 19-9, and carcinoembryonic antigen in various pancreatic diseases. Am J Gastroenterol 80(8):630–636PubMedGoogle Scholar
  65. 65.
    Brugge WRLK, Lee-Lewandrowski E, Centeno BA, Szydlo T, Regan S, del Castillo CF, Warshaw AL (2004) Diagnosis of pancreatic cystic neoplasm: a report of the cooperative pancreatic cyst study. Gastroenterology 126(5):1330–1336.  https://doi.org/10.1053/j.gastro.2004.02.013 PubMedCrossRefGoogle Scholar
  66. 66.
    Khalid A, Zahid M, Finkelstein SD, LeBlanc JK, Kaushik N, Ahmad N, Brugge WR, Edmundowicz SA, Hawes RH, McGrath KM (2009) Pancreatic cyst fluid DNA analysis in evaluating pancreatic cysts: a report of the PANDA study. Gastrointest Endosc 69(6):1095–1102.  https://doi.org/10.1016/j.gie.2008.07.033 PubMedCrossRefGoogle Scholar
  67. 67.
    Safi FSW, Falkenreck S, Beger HG (1998) Prognostic value of CA 19-9 serum course in pancreatic cancer. Hepato-Gastroenterology 45(19):254–259Google Scholar
  68. 68.
    Kim JR, Jang JY, Kang MJ, Park T, Lee SY, Jung W, Chang J, Shin Y, Han Y, Kim SW (2015) Clinical implication of serum carcinoembryonic antigen and carbohydrate antigen 19-9 for the prediction of malignancy in intraductal papillary mucinous neoplasm of pancreas. J Hepatobiliary Pancreat Sci 22(9):699–707.  https://doi.org/10.1002/jhbp.275 PubMedCrossRefGoogle Scholar
  69. 69.
    Fritz SHT, Hinz U, Hartwig W, BuchlerMW WJ (2011) Role of serum carbohydrate antigen 19-9 and carcinoembryonic antigen in distinguishing between benign and invasive intraductal papillary mucinous neoplasm of the pancreas. Br J Surg 98(1):104–110.  https://doi.org/10.1002/bjs.7280 PubMedCrossRefGoogle Scholar
  70. 70.
    Kucera S, Centeno BA, Springett G, Malafa MP, Chen YA, Weber J, Klapman J (2012) Cyst fluid carcinoembryonic antigen level is not predictive of invasive cancer in patients with intraductal papillary mucinous neoplasm of the pancreas. J Pancreas 13(4):409–413.  https://doi.org/10.6092/1590-8577/664 Google Scholar
  71. 71.
    Othman MO, Patel M, Dabizzi E, Asbun HJ, Stauffer J, Wallace MB, Woodward TA, Raimondo M (2012) Carcino embryonic antigen and long-term follow-up of mucinous pancreatic cysts including intraductal papillary mucinous neoplasm. Dig Liver Dis 44(10):844–848.  https://doi.org/10.1016/j.dld.2012.06.005 PubMedCrossRefGoogle Scholar
  72. 72.
    Ngamruengphong S, Bartel MJ, Raimondo M (2013) Cyst carcinoembryonic antigen in differentiating pancreatic cysts: a meta-analysis. Dig Liver Dis 45(11):920–926.  https://doi.org/10.1016/j.dld.2013.05.002 PubMedCrossRefGoogle Scholar
  73. 73.
    Bafna S, Kaur S, Batra SK (2010) Membrane-bound mucins: the mechanistic basis for alterations in the growth and survival of cancer cells. Oncogene 29(20):2893–2904.  https://doi.org/10.1038/onc.2010.87 PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Hollingsworth MA, Strawhecker JM, Caffrey TC, Mack DR (1994) Expression of MUC1, MUC2, MUC3 and MUC4 mucin mRNAs in human pancreatic and intestinal tumor cell lines. Int J Cancer 57(2):198–203.  https://doi.org/10.1002/ijc.2910570212 PubMedCrossRefGoogle Scholar
  75. 75.
    Yonezawa S, Goto M, Yamada N, Higashi M, Nomoto M (2008) Expression profiles of MUC1, MUC2, and MUC4 mucins in human neoplasms and their relationship with biological behavior. Proteomics 8(16):3329–3341.  https://doi.org/10.1002/pmic.200800040 PubMedCrossRefGoogle Scholar
  76. 76.
    Yonezawa S, Sato E (1997) Expression of mucin antigens in human cancers and its relationship with malignancy potential. Pathol Int 47(12):813–830.  https://doi.org/10.1111/j.1440-1827.1997.tb03713.x PubMedCrossRefGoogle Scholar
  77. 77.
    Mahefatiana Andrianifahanana NM, Schmied BM, Ringel J, Friess H, Hollingsworth MA, Büchler MW, Aubert J-P, Batra SK (2001) Mucin (MUC) gene expression in human pancreatic adenocarcinoma and chronic pancreatitis: a potential role of MUC4 as a tumormarker of diagnostic significance. Clin Cancer Res 7(12):4033–4040Google Scholar
  78. 78.
    Nakamura A, Horinouchi M, Goto M, Nagata K, Sakoda K, Takao S, Imai K, Kim YS, Sato E, Yonezawa S (2002) New classification of pancreatic intraductal papillary-mucinous tumour by mucin expression: its relationship with potential for malignancy. J Pathol 197(2):201–210.  https://doi.org/10.1002/path.1109 PubMedCrossRefGoogle Scholar
  79. 79.
    Terris B, Dubois S, Buisine MP, Sauvanet A, Ruszniewski P, Aubert JP, Porchet N, Couvelard A, Degott C, Flejou JF (2002) Mucin gene expression in intraductal papillary-mucinous pancreatic tumours and related lesions. J Pathol 197(5):632–637.  https://doi.org/10.1002/path.1146 PubMedCrossRefGoogle Scholar
  80. 80.
    Sinha J, Cao Z, Dai J, Tang H, Partyka K, Hostetter G, Simeone DM, Feng Z, Allen PJ, Brand RE, Haab BB (2016) A gastric glycoform of MUC5AC is a biomarker of mucinous cysts of the pancreas. PLoS One 11(12):e0167070.  https://doi.org/10.1371/journal.pone.0167070 PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Nagata K, Horinouchi M, Saitou M, Higashi M, Nomoto M, Goto M, Yonezawa S (2007) Mucin expression profile in pancreatic cancer and the precursor lesions. J Hepato-Biliary-Pancreat Surg 14(3):243–254.  https://doi.org/10.1007/s00534-006-1169-2 CrossRefGoogle Scholar
  82. 82.
    Moniaux N, Andrianifahanana M, Brand RE, Batra SK (2004) Multiple roles of mucins in pancreatic cancer, a lethal and challenging malignancy. Br J Cancer 91(9):1633–1638.  https://doi.org/10.1038/sj.bjc.6602163 PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Remmers N, Anderson JM, Linde EM, DiMaio DJ, Lazenby AJ, Wandall HH, Mandel U, Clausen H, Yu F, Hollingsworth MA (2013) Aberrant expression of mucin core proteins and o-linked glycans associated with progression of pancreatic cancer. Clin Cancer Res 19(8):1981–1993.  https://doi.org/10.1158/1078-0432.CCR-12-2662 PubMedCrossRefGoogle Scholar
  84. 84.
    Moniaux N, Nollet S, Porchet N, Degand P, Laine A, Aubert JP (1999) Complete sequence of the human mucin MUC4: a putative cell membrane-associated mucin. Biochem J 338(Prt2):325–333PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Carrara S, Cangi MG, Arcidiacono PG, Perri F, Petrone MC, Mezzi G, Boemo C, Talarico A, Cin ED, Grassini G, Doglioni C, Testoni PA (2011) Mucin expression pattern in pancreatic diseases: findings from EUS-guided fine-needle aspiration biopsies. Am J Gastroenterol 106(7):1359–1363.  https://doi.org/10.1038/ajg.2011.22 PubMedCrossRefGoogle Scholar
  86. 86.
    Miyoshi E, Nakano M (2008) Fucosylated haptoglobin is a novel marker for pancreatic cancer: detailed analyses of oligosaccharide structures. Proteomics 8(16):3257–3262.  https://doi.org/10.1002/pmic.200800046 PubMedCrossRefGoogle Scholar
  87. 87.
    Akimoto Y, Nouso K, Kato H, Miyahara K, Dohi C, Morimoto Y, Kinugasa H, Tomoda T, Yamamoto N, Tsutsumi K, Kuwaki K, Onishi H, Ikeda F, Nakamura S, Shiraha H, Takaki A, Okada H, Amano M, Nishimura S, Yamamoto K (2015) Serum N-glycan profiles in patients with intraductal papillary mucinous neoplasms of the pancreas. Pancreatology 15(4):432–438.  https://doi.org/10.1016/j.pan.2015.05.470 PubMedCrossRefGoogle Scholar
  88. 88.
    Hiraoka N, Onozato K, Kosuge T, Hirohashi S (2006) Prevalence of FOXP3+ regulatory T cells increases during the progression of pancreatic ductal adenocarcinoma and its premalignant lesions. Clin Cancer Res 12(18):5423–5434.  https://doi.org/10.1158/1078-0432.CCR-06-0369 PubMedCrossRefGoogle Scholar
  89. 89.
    Noh KW, Pungpapong S, Wallace MB, Woodward TA, Raimondo M (2006) Do cytokine concentrations in pancreatic juice predict the presence of pancreatic diseases? Clin Gastroenterol Hepatol 4(6):782–789.  https://doi.org/10.1016/j.cgh.2006.03.026 PubMedCrossRefGoogle Scholar
  90. 90.
    Yamada S, Fuchs BC, Fujii T, Shimoyama Y, Sugimoto H, Nomoto S, Takeda S, Tanabe KK, Kodera Y, Nakao A (2013) Epithelial-to-mesenchymal transition predicts prognosis of pancreatic cancer. Surgery 154(5):946–954.  https://doi.org/10.1016/j.surg.2013.05.004 PubMedCrossRefGoogle Scholar
  91. 91.
    Castellanos JA, Merchant NB, Nagathihalli NS (2013) Emerging targets in pancreatic cancer: epithelial-mesenchymal transition and cancer stem cells. Onco Targets Ther 6:1261–1267.  https://doi.org/10.2147/OTT.S34670 PubMedPubMedCentralGoogle Scholar
  92. 92.
    Lahat G, Lubezky N, Loewenstein S, Nizri E, Gan S, Pasmanik-Chor M, Hayman L, Barazowsky E, Ben-Haim M, Klausner JM (2014) Epithelial-to-mesenchymal transition (EMT) in intraductal papillary mucinous neoplasm (IPMN) is associated with high tumor grade and adverse outcomes. Ann Surg Oncol 21(Suppl 4):S750–S757.  https://doi.org/10.1245/s10434-014-3946-5 PubMedCrossRefGoogle Scholar
  93. 93.
    Schmidt CM, Yip-Schneider MT, Ralstin MC, Wentz S, DeWitt J, Sherman S, Howard TJ, McHenry L, Dutkevitch S, Goggins M, Nakeeb A, Lillemoe KD (2008) PGE(2) in pancreatic cyst fluid helps differentiate IPMN from MCN and predict IPMN dysplasia. J Gastrointest Surg 12(2):243–249.  https://doi.org/10.1007/s11605-007-0404-8 PubMedCrossRefGoogle Scholar
  94. 94.
    Yip-Schneider MT, Carr RA, Wu H, Schmidt CM (2017) Prostaglandin E2: a pancreatic fluid biomarker of intraductal papillary mucinous neoplasm dysplasia. J Am Coll Surg 225(4):481–487.  https://doi.org/10.1016/j.jamcollsurg.2017.07.521 PubMedCrossRefGoogle Scholar
  95. 95.
    Hamanaka Y, Suehiro Y, Fukui M, Shikichi K, Imai K, Hinoda Y (2003) Circulating anti-MUC1 IgG antibodies as a favorable prognostic factor for pancreatic cancer. Int J Cancer 103(1):97–100.  https://doi.org/10.1002/ijc.10801 PubMedCrossRefGoogle Scholar
  96. 96.
    Beatty PL, van der Geest R, Hashash JG, Kimura T, Gutkin D, Brand RE, Finn OJ (2016) Immunobiology and immunosurveillance in patients with intraductal papillary mucinous neoplasms (IPMNs), premalignant precursors of pancreatic adenocarcinomas. Cancer Immunol Immunother 65(7):771–778.  https://doi.org/10.1007/s00262-016-1838-1 PubMedCrossRefGoogle Scholar
  97. 97.
    Gemenetzis G, Bagante F, Griffin JF, Rezaee N, Javed AA, Manos LL, Lennon AM, Wood LD, Hruban RH, Zheng L, Zaheer A, Fishman EK, Ahuja N, Cameron JL, Weiss MJ, He J, Wolfgang CL (2017) Neutrophil-to-lymphocyte ratio is a predictive marker for invasive malignancy in intraductal papillary mucinous neoplasms of the pancreas. Ann Surg 266(2):339–345.  https://doi.org/10.1097/SLA.0000000000001988 PubMedCrossRefGoogle Scholar
  98. 98.
    Arima K, Okabe H, Hashimoto D, Chikamoto A, Kuroki H, Taki K, Kaida T, Higashi T, Nitta H, Komohara Y, Beppu T, Takeya M, Baba H (2015) The neutrophil-to-lymphocyte ratio predicts malignant potential in intraductal papillary mucinous neoplasms. J Gastrointest Surg 19(12):2171–2177.  https://doi.org/10.1007/s11605-015-2973-2 PubMedCrossRefGoogle Scholar
  99. 99.
    Al Efishat MA, Attiyeh MF, Eaton AA, Gonen M, Prosser D, Lokshin AE, Castillo CF, Lillemoe KD, Ferrone CR, Pergolini I, Mino-Kenudson M, Rezaee N, Dal Molin M, Weiss MJ, Cameron JL, Hruban RH, D’Angelica MI, Kingham TP, DeMatteo RP, Jarnagin WR, Wolfgang CL, Allen PJ (2017) Multi-institutional validation study of pancreatic cyst fluid protein analysis for prediction of high-risk intraductal papillary mucinous neoplasms of the pancreas. Ann Surg:1.  https://doi.org/10.1097/SLA.0000000000002421
  100. 100.
    Masica DL, Dal Molin M, Wolfgang CL, Tomita T, Ostovaneh MR, Blackford A, Moran RA, Law JK, Barkley T, Goggins M, Irene Canto M, Pittman M, Eshleman JR, Ali SZ, Fishman EK, Kamel IR, Raman SP, Zaheer A, Ahuja N, Makary MA, Weiss MJ, Hirose K, Cameron JL, Rezaee N, He J, Joon Ahn Y, Wu W, Wang Y, Springer S, Diaz LL Jr, Papadopoulos N, Hruban RH, Kinzler KW, Vogelstein B, Karchin R, Lennon AM (2017) A novel approach for selecting combination clinical markers of pathology applied to a large retrospective cohort of surgically resected pancreatic cysts. J Am Med Inform Assoc 24(1):145–152.  https://doi.org/10.1093/jamia/ocw06 PubMedCrossRefGoogle Scholar
  101. 101.
    Medina PP, Slack FJ (2008) MicroRNAs and cancer: an overview. Cell Cycle 7(16):2485–2492.  https://doi.org/10.4161/cc.7.16.6453 PubMedCrossRefGoogle Scholar
  102. 102.
    Bloomston M, Frankel WL, Petrocca F, Volinia S, Alder H, Hagan JP, Liu CG, Bhatt D, Taccioli C, Croce CM (2007) MicroRNA expression patterns to differentiate pancreatic adenocarcinoma from normal pancreas and chronic pancreatitis. JAMA 297(17):1901–1908.  https://doi.org/10.1001/jama.297.17.1901 PubMedCrossRefGoogle Scholar
  103. 103.
    Yu J, Li A, Hong SM, Hruban RH, Goggins M (2012) MicroRNA alterations of pancreatic intraepithelial neoplasias. Clin Cancer Res 18(4):981–992.  https://doi.org/10.1158/1078-0432.CCR-11-2347 PubMedCrossRefGoogle Scholar
  104. 104.
    Szafranska AE, Doleshal M, Edmunds HS, Gordon S, Luttges J, Munding JB, Barth RJ, Gutmann EJ, Suriawinata AA, Pipas JM, Tannapfel A, Korc M, Hahn SA, Labourier E, Tsongalis GJ (2008) Analysis of microRNAs in pancreatic fine-needle aspirates can classify benign and malignant tissues. Clin Chem 54(10):1716–1724.  https://doi.org/10.1373/clinchem.2008.109603 PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Szafranska AE, Davison TS, John J, Cannon T, Sipos B, Maghnouj A, Labourier E, Hahn SA (2007) MicroRNA expression alterations are linked to tumorigenesis and non-neoplastic processes in pancreatic ductal adenocarcinoma. Oncogene 26(30):4442–4452.  https://doi.org/10.1038/sj.onc.1210228 PubMedCrossRefGoogle Scholar
  106. 106.
    Caponi S, Funel N, Frampton AE, Mosca F, Santarpia L, Van der Velde AG, Jiao LR, De Lio N, Falcone A, Kazemier G, Meijer GA, Verheul HM, Vasile E, Peters GJ, Boggi U, Giovannetti E (2013) The good, the bad and the ugly: a tale of miR-101, miR-21 and miR-155 in pancreatic intraductal papillary mucinous neoplasms. Ann Oncol 24(3):734–741.  https://doi.org/10.1093/annonc/mds513 PubMedCrossRefGoogle Scholar
  107. 107.
    Ryu JK, Matthaei H, Dal Molin M, Hong SM, Canto MI, Schulick RD, Wolfgang C, Goggins MG, Hruban RH, Cope L, Maitra A (2011) Elevated microRNA miR-21 levels in pancreatic cyst fluid are predictive of mucinous precursor lesions of ductal adenocarcinoma. Pancreatology 11(3):343–350.  https://doi.org/10.1159/000329183 PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Lubezky N, Loewenstein S, Ben-Haim M, Brazowski E, Marmor S, Pasmanik-Chor M, Oron-Karni V, Rechavi G, Klausner JM, Lahat G (2013) MicroRNA expression signatures in intraductal papillary mucinous neoplasm of the pancreas. Surgery 153(5):663–672.  https://doi.org/10.1016/j.surg.2012.11.016 PubMedCrossRefGoogle Scholar
  109. 109.
    Matthaei H, Wylie D, Lloyd MB, Dal Molin M, Kemppainen J, Mayo SC, Wolfgang CL, Schulick RD, Langfield L, Andruss BF, Adai AT, Hruban RH, Szafranska-Schwarzbach AE, Maitra A (2012) miRNA biomarkers in cyst fluid augment the diagnosis and management of pancreatic cysts. Clin Cancer Res 18(17):4713–4724.  https://doi.org/10.1158/1078-0432.CCR-12-0035 PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Permuth-Wey J, Chen YA, Fisher K, McCarthy S, Qu X, Lloyd MC, Kasprzak A, Fournier M, Williams VL, Ghia KM, Yoder SJ, Hall L, Georgeades C, Olaoye F, Husain K, Springett GM, Chen DT, Yeatman T, Centeno BA, Klapman J, Coppola D, Malafa M (2015) A genome-wide investigation of microRNA expression identifies biologically-meaningful microRNAs that distinguish between high-risk and low-risk intraductal papillary mucinous neoplasms of the pancreas. PLoS One 10(1):e0116869.  https://doi.org/10.1371/journal.pone.0116869 PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    Wang L, Zheng J, Sun C, Wang L, Jin G, Xin L, Jin Z, Wang D, Li Z (2017) MicroRNA expression levels as diagnostic biomarkers for intraductal papillary mucinous neoplasm. OncotargetGoogle Scholar
  112. 112.
    Vila-Navarro E, Vila-Casadesus M, Moreira L, Duran-Sanchon S, Sinha R, Gines A, Fernandez-Esparrach G, Miquel R, Cuatrecasas M, Castells A, Lozano JJ, Gironella M (2017) MicroRNAs for detection of pancreatic neoplasia: biomarker discovery by next-generation sequencing and validation in 2 independent cohorts. Ann Surg 265(6):1226–1234.  https://doi.org/10.1097/SLA.0000000000001809 PubMedCrossRefGoogle Scholar
  113. 113.
    Wang J, Paris PL, Chen J, Ngo V, Yao H, Frazier ML, Killary AM, Liu CG, Liang H, Mathy C, Bondada S, Kirkwood K, Sen S (2015) Next generation sequencing of pancreatic cyst fluid microRNAs from low grade-benign and high grade-invasive lesions. Cancer Lett 356(2 Pt B):404–409.  https://doi.org/10.1016/j.canlet.2014.09.029 PubMedCrossRefGoogle Scholar
  114. 114.
    Abue M, Yokoyama M, Shibuya R, Tamai K, Yamaguchi K, Sato I, Tanaka N, Hamada S, Shimosegawa T, Sugamura K, Satoh K (2015) Circulating miR-483-3p and miR-21 is highly expressed in plasma of pancreatic cancer. Int J Oncol 46(2):539–547.  https://doi.org/10.3892/ijo.2014.2743 PubMedCrossRefGoogle Scholar
  115. 115.
    Permuth-Wey J, Chen DT, Fulp WJ, Yoder SJ, Zhang Y, Georgeades C, Husain K, Centeno BA, Magliocco AM, Coppola D, Malafa M (2015) Plasma microRNAs as novel biomarkers for patients with intraductal papillary mucinous neoplasms of the pancreas. Cancer Prev Res (Phila) 8(9):826–834.  https://doi.org/10.1158/1940-6207.CAPR-15-0094 CrossRefGoogle Scholar
  116. 116.
    Humeau M, Vignolle-Vidoni A, Sicard F, Martins F, Bournet B, Buscail L, Torrisani J, Cordelier P (2015) Salivary microRNA in pancreatic cancer patients. PLoS One 10(6):e0130996.  https://doi.org/10.1371/journal.pone.0130996 PubMedPubMedCentralCrossRefGoogle Scholar
  117. 117.
    Piepoli A, Tavano F, Copetti M, Mazza T, Palumbo O, Panza A, di Mola FF, Pazienza V, Mazzoccoli G, Biscaglia G, Gentile A, Mastrodonato N, Carella M, Pellegrini F, di Sebastiano P, Andriulli A (2012) MiRNA expression profiles identify drivers in colorectal and pancreatic cancers. PLoS One 7(3):e33663.  https://doi.org/10.1371/journal.pone.0033663 PubMedPubMedCentralCrossRefGoogle Scholar
  118. 118.
    Zheng H, Li W, Wang Y, Xie T, Cai Y, Wang Z, Jiang B (2014) miR-23a inhibits E-cadherin expression and is regulated by AP-1 and NFAT4 complex during Fas-induced EMT in gastrointestinal cancer. Carcinogenesis 35(1):173–183.  https://doi.org/10.1093/carcin/bgt274 PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Department of Surgery, Division of Surgical OncologyUniversity of Illinois at ChicagoChicagoUSA
  2. 2.Department of Microbiology and ImmunologyUniversity of Illinois at ChicagoChicagoUSA
  3. 3.Creticos Cancer Center at AIMMCChicagoUSA

Personalised recommendations