Langenbeck's Archives of Surgery

, Volume 399, Issue 5, pp 639–647 | Cite as

Gene expression changes in cancellous bone of type 2 diabetics: a biomolecular basis for diabetic bone disease

  • A. T. Haug
  • K. F. Braun
  • S. Ehnert
  • L. Mayer
  • U. Stöckle
  • A. K. Nüssler
  • S. Pscherer
  • T. Freude
Original Article

Abstract

Purpose

Diabetes mellitus type 2 (2DM) is associated with altered bone quality. In order to analyze associated changes on a molecular level, we investigated the gene expression of key factors of osteoblast metabolism in type 2 diabetics.

Methods

Total mRNA and protein of bone samples from 2DM patients and non-diabetic patients were isolated, and subsequently, reverse transcription polymerase chain reaction (RT-PCR) or Western blot was performed. Furthermore, pro- and anti-inflammatory serum cytokine levels were determined using a cytokine array.

Results

Expression of runt-related transcription factor 2 (RUNX2) was increased by 53 %. Expression of the bone sialoproteins, secreted phosphoprotein 1 (SPP1; osteopontin), and integrin-binding sialoprotein (IBSP), was elevated by more than 50 %, and activating transcription factor 4 (ATF4) expression was 13 % lower in the investigated diabetes group compared to the control group. Similarly, the expression of versican (VCAN) and decorin (DCN) was upregulated twofold in the diabetic group. At the same time, 2DM patients and controls show alterations in pro- and anti-inflammatory cytokine levels in the serum.

Conclusions

This study identifies considerable changes in the expression of transcription factors and extracellular matrix (ECM) components of bone in 2DM patients. Furthermore, the analysis of key differentiation factors of osteoblasts revealed significant alterations in gene expression of these factors, which may contribute to the dysregulation of energy metabolism in 2DM.

Keywords

Diabetes mellitus type 2 Bone Osteoblast differentiation ATF4 ECM Inflammation 

References

  1. 1.
    Wild S, Roglic G, Green A, Sicree R, King H (2004) Global prevalence of diabetes: estimates for the year 2000 and projections for 2030. Diabetes Care 27(5):1047–1053PubMedCrossRefGoogle Scholar
  2. 2.
    Vestergaard P, Rejnmark L, Mosekilde L (2005) Relative fracture risk in patients with diabetes mellitus, and the impact of insulin and oral antidiabetic medication on relative fracture risk. Diabetologia 48(7):1292–1299. doi:10.1007/s00125-005-1786-3 PubMedCrossRefGoogle Scholar
  3. 3.
    Retzepi M, Donos N (2010) The effect of diabetes mellitus on osseous healing. Clin Oral Implants Res 21(7):673–681. doi:10.1111/j.1600-0501.2010.01923.x PubMedCrossRefGoogle Scholar
  4. 4.
    Vestergaard P (2007) Discrepancies in bone mineral density and fracture risk in patients with type 1 and type 2 diabetes—a meta-analysis. Osteoporos Int 18(4):427–444. doi:10.1007/s00198-006-0253-4 PubMedCrossRefGoogle Scholar
  5. 5.
    Forsen L, Meyer HE, Midthjell K, Edna TH (1999) Diabetes mellitus and the incidence of hip fracture: results from the Nord-Trondelag Health Survey. Diabetologia 42(8):920–925. doi:10.1007/s001250051248 PubMedCrossRefGoogle Scholar
  6. 6.
    Janghorbani M, Feskanich D, Willett WC, Hu F (2006) Prospective study of diabetes and risk of hip fracture: the Nurses’ Health Study. Diabetes Care 29(7):1573–1578. doi:10.2337/dc06-0440 PubMedCrossRefGoogle Scholar
  7. 7.
    Loder RT (1988) The influence of diabetes mellitus on the healing of closed fractures. Clin Orthop Relat Res 232:210–216PubMedGoogle Scholar
  8. 8.
    Ducy P, Zhang R, Geoffroy V, Ridall AL, Karsenty G (1997) Osf2/Cbfa1: a transcriptional activator of osteoblast differentiation. Cell 89(5):747–754PubMedCrossRefGoogle Scholar
  9. 9.
    Boskey AL, Spevak L, Paschalis E, Doty SB, McKee MD (2002) Osteopontin deficiency increases mineral content and mineral crystallinity in mouse bone. Calcif Tissue Int 71(2):145–154. doi:10.1007/s00223-001-1121-z PubMedCrossRefGoogle Scholar
  10. 10.
    Grzesik WJ, Robey PG (1994) Bone matrix RGD glycoproteins: immunolocalization and interaction with human primary osteoblastic bone cells in vitro. J Bone Miner Res 9(4):487–496. doi:10.1002/jbmr.5650090408 PubMedCrossRefGoogle Scholar
  11. 11.
    Bianco P, Fisher LW, Young MF, Termine JD, Robey PG (1991) Expression of bone sialoprotein (BSP) in developing human tissues. Calcif Tissue Int 49(6):421–426PubMedCrossRefGoogle Scholar
  12. 12.
    van der Pluijm G, Vloedgraven HJ, Ivanov B, Robey FA, Grzesik WJ, Robey PG, Papapoulos SE, Lowik CW (1996) Bone sialoprotein peptides are potent inhibitors of breast cancer cell adhesion to bone. Cancer Res 56(8):1948–1955PubMedGoogle Scholar
  13. 13.
    Yoshizawa T, Hinoi E, Jung DY, Kajimura D, Ferron M, Seo J, Graff JM, Kim JK, Karsenty G (2009) The transcription factor ATF4 regulates glucose metabolism in mice through its expression in osteoblasts. J Clin Invest 119(9):2807–2817. doi:10.1172/JCI39366 PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    Hwang YC, Jeong IK, Ahn KJ, Chung HY (2009) The uncarboxylated form of osteocalcin is associated with improved glucose tolerance and enhanced beta-cell function in middle-aged male subjects. Diabetes Metab Res Rev 25(8):768–772. doi:10.1002/dmrr.1045 PubMedCrossRefGoogle Scholar
  15. 15.
    Kanazawa I, Yamaguchi T, Tada Y, Yamauchi M, Yano S, Sugimoto T (2011) Serum osteocalcin level is positively associated with insulin sensitivity and secretion in patients with type 2 diabetes. Bone 48(4):720–725. doi:10.1016/j.bone.2010.12.020 PubMedCrossRefGoogle Scholar
  16. 16.
    Dobreva G, Chahrour M, Dautzenberg M, Chirivella L, Kanzler B, Farinas I, Karsenty G, Grosschedl R (2006) SATB2 is a multifunctional determinant of craniofacial patterning and osteoblast differentiation. Cell 125(5):971–986. doi:10.1016/j.cell.2006.05.012 PubMedCrossRefGoogle Scholar
  17. 17.
    Kim S, Koga T, Isobe M, Kern BE, Yokochi T, Chin YE, Karsenty G, Taniguchi T, Takayanagi H (2003) Stat1 functions as a cytoplasmic attenuator of Runx2 in the transcriptional program of osteoblast differentiation. Genes Dev 17(16):1979–1991. doi:10.1101/gad.1119303 PubMedCentralPubMedCrossRefGoogle Scholar
  18. 18.
    Nakashima K, Zhou X, Kunkel G, Zhang Z, Deng JM, Behringer RR, de Crombrugghe B (2002) The novel zinc finger-containing transcription factor osterix is required for osteoblast differentiation and bone formation. Cell 108(1):17–29PubMedCrossRefGoogle Scholar
  19. 19.
    Waddington RJ, Roberts HC, Sugars RV, Schonherr E (2003) Differential roles for small leucine-rich proteoglycans in bone formation. Eur Cell Mater 6:12–21, discussion 21PubMedGoogle Scholar
  20. 20.
    Hildebrand A, Romaris M, Rasmussen LM, Heinegard D, Twardzik DR, Border WA, Ruoslahti E (1994) Interaction of the small interstitial proteoglycans biglycan, decorin and fibromodulin with transforming growth factor beta. Biochem J 302(Pt 2):527–534PubMedCentralPubMedGoogle Scholar
  21. 21.
    Freude T, Braun KF, Haug A, Pscherer S, Stockle U, Nussler AK, Ehnert S (2012) Hyperinsulinemia reduces osteoblast activity in vitro via upregulation of TGF-beta. J Mol Med (Berl) 90(11):1257–1266. doi:10.1007/s00109-012-0948-2 CrossRefGoogle Scholar
  22. 22.
    Pscherer S, Freude T, Forst T, Nussler AK, Braun KF, Ehnert S (2013) Anti-diabetic treatment regulates pro-fibrotic TGF-beta serum levels in type 2 diabetics. Diabetol Metab Syndr 5(1):48. doi:10.1186/1758-5996-5-48 PubMedCentralPubMedCrossRefGoogle Scholar
  23. 23.
    Wight TN (2002) Versican: a versatile extracellular matrix proteoglycan in cell biology. Curr Opin Cell Biol 14(5):617–623PubMedCrossRefGoogle Scholar
  24. 24.
    Nakamura M, Sone S, Takahashi I, Mizoguchi I, Echigo S, Sasano Y (2005) Expression of versican and ADAMTS1, 4, and 5 during bone development in the rat mandible and hind limb. J Histochem Cytochem 53(12):1553–1562. doi:10.1369/jhc.5A6669.2005 PubMedCentralPubMedCrossRefGoogle Scholar
  25. 25.
    Shapiro F (2008) Bone development and its relation to fracture repair. The role of mesenchymal osteoblasts and surface osteoblasts. Eur Cell Mater 15:53–76PubMedGoogle Scholar
  26. 26.
    Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193(1):265–275PubMedGoogle Scholar
  27. 27.
    Schwartz AV, Hillier TA, Sellmeyer DE, Resnick HE, Gregg E, Ensrud KE, Schreiner PJ, Margolis KL, Cauley JA, Nevitt MC, Black DM, Cummings SR (2002) Older women with diabetes have a higher risk of falls: a prospective study. Diabetes Care 25(10):1749–1754PubMedCrossRefGoogle Scholar
  28. 28.
    Chaudhary SB, Liporace FA, Gandhi A, Donley BG, Pinzur MS, Lin SS (2008) Complications of ankle fracture in patients with diabetes. J Am Acad Orthop Surg 16(3):159–170PubMedGoogle Scholar
  29. 29.
    Schwartz AV, Sellmeyer DE, Ensrud KE, Cauley JA, Tabor HK, Schreiner PJ, Jamal SA, Black DM, Cummings SR (2001) Older women with diabetes have an increased risk of fracture: a prospective study. J Clin Endocrinol Metab 86(1):32–38PubMedCrossRefGoogle Scholar
  30. 30.
    Schwartz AV (2003) Diabetes mellitus: does it affect bone? Calcif Tissue Int 73(6):515–519. doi:10.1007/s00223-003-0023-7 PubMedCrossRefGoogle Scholar
  31. 31.
    Cozen L (1972) Does diabetes delay fracture healing? Clin Orthop Relat Res 82:134–140PubMedGoogle Scholar
  32. 32.
    Bibbo C, Lin SS, Beam HA, Behrens FF (2001) Complications of ankle fractures in diabetic patients. Orthop Clin North Am 32(1):113–133PubMedCrossRefGoogle Scholar
  33. 33.
    Ferron M, Wei J, Yoshizawa T, Del Fattore A, DePinho RA, Teti A, Ducy P, Karsenty G (2010) Insulin signaling in osteoblasts integrates bone remodeling and energy metabolism. Cell 142(2):296–308. doi:10.1016/j.cell.2010.06.003 PubMedCentralPubMedCrossRefGoogle Scholar
  34. 34.
    Ehnert S, Baur J, Schmitt A, Neumaier M, Lucke M, Dooley S, Vester H, Wildemann B, Stockle U, Nussler AK (2010) TGF-beta1 as possible link between loss of bone mineral density and chronic inflammation. PLoS One 5(11):e14073. doi:10.1371/journal.pone.0014073 PubMedCentralPubMedCrossRefGoogle Scholar
  35. 35.
    Atanga E, Dolder S, Dauwalder T, Wetterwald A, Hofstetter W (2011) TNFalpha inhibits the development of osteoclasts through osteoblast-derived GM-CSF. Bone 49(5):1090–1100. doi:10.1016/j.bone.2011.08.003 PubMedCrossRefGoogle Scholar
  36. 36.
    Glantschnig H, Fisher JE, Wesolowski G, Rodan GA, Reszka AA (2003) M-CSF, TNFalpha and RANK ligand promote osteoclast survival by signaling through mTOR/S6 kinase. Cell Death Differ 10(10):1165–1177. doi:10.1038/sj.cdd.4401285 PubMedCrossRefGoogle Scholar
  37. 37.
    Hwang YS, Lee SK, Park KK, Chung WY (2012) Secretion of IL-6 and IL-8 from lysophosphatidic acid-stimulated oral squamous cell carcinoma promotes osteoclastogenesis and bone resorption. Oral Oncol 48(1):40–48. doi:10.1016/j.oraloncology.2011.08.022 PubMedCrossRefGoogle Scholar
  38. 38.
    Lee MS, Kim HS, Yeon JT, Choi SW, Chun CH, Kwak HB, Oh J (2009) GM-CSF regulates fusion of mononuclear osteoclasts into bone-resorbing osteoclasts by activating the Ras/ERK pathway. J Immunol 183(5):3390–3399. doi:10.4049/jimmunol.0804314 PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • A. T. Haug
    • 1
  • K. F. Braun
    • 1
  • S. Ehnert
    • 2
  • L. Mayer
    • 2
  • U. Stöckle
    • 2
  • A. K. Nüssler
    • 2
  • S. Pscherer
    • 3
  • T. Freude
    • 2
  1. 1.Dept. of Trauma Surgery, Klinikum rechts der IsarTechnical University MunichMunichGermany
  2. 2.Clinic for Trauma and Reconstruction Surgery (BG Trauma Center)Eberhard-Karls-Universität TübingenTübingenGermany
  3. 3.Dept. of Internal Medicine, Klinikum TraunsteinTraunsteinGermany

Personalised recommendations