Langenbeck's Archives of Surgery

, Volume 399, Issue 1, pp 1–9 | Cite as

Immunopathogenesis of abdominal sepsis

Review Article

Abstract

Background

Sepsis is an unsolved problem worldwide, with a 30–50 % mortality rate. The recent failures of anti-TLR4, recombinant activated protein C, and anti-TNF in clinical trials indicate a need to rethink our current understanding of sepsis’s pathophysiology. While the initial immune response is crucial for effective clearance of invading pathogens, an overly exuberant host response to infection can cause septic shock, tissue damage, and death. Profuse inflammation in sepsis is frequently followed by global immunosuppression that increases susceptibility to viral and bacterial infections. Despite the dangers of immune over-response, the immune system’s anti-inflammatory activities are likely necessary to reduce the initial over-activation of the immune system.

Purpose

With this review, we want to illuminate the different aspects of immune response to sepsis and provide insight to the ongoing difficulties currently present within sepsis research.

Conclusion

Future treatment strategies for sepsis should focus on maintaining balance between pro- and anti-inflammatory immune actions in a timely manner.

Keywords

Sepsis Immune regulation Translational research 

References

  1. 1.
    Angus DC, Linde-Zwirble WT, Lidicker J, Clermont G, Carcillo J, Pinsky MR (2001) Epidemiology of severe sepsis in the United States: analysis of incidence, outcome, and associated costs of care. Crit Care Med 29:1303–1310PubMedCrossRefGoogle Scholar
  2. 2.
    Coopersmith CM, Wunsch H, Fink MP, Linde-Zwirble WT, Olsen KM, Sommers MS, Anand KJ, Tchorz KM, Angus DC, Deutschman CS (2012) A comparison of critical care research funding and the financial burden of critical illness in the United States. Crit Care Med 40:1072–1079PubMedCrossRefGoogle Scholar
  3. 3.
    Angus DC (2011) The search for effective therapy for sepsis: back to the drawing board? JAMA 306:2614–2615PubMedCrossRefGoogle Scholar
  4. 4.
    Russell JA (2006) Management of sepsis. N Engl J Med 355:1699–1713PubMedCrossRefGoogle Scholar
  5. 5.
    Hotchkiss RS, Coopersmith CM, McDunn JE, Ferguson TA (2009) The sepsis seesaw: tilting toward immunosuppression. Nat Med 15:496–497PubMedCentralPubMedCrossRefGoogle Scholar
  6. 6.
    Takeuchi O, Akira S (2010) Pattern recognition receptors and inflammation. Cell 140:805–820PubMedCrossRefGoogle Scholar
  7. 7.
    Khan KS, Wojdyla D, Say L, Gulmezoglu AM, Van Look PF (2006) WHO analysis of causes of maternal death: a systematic review. Lancet 367:1066–1074PubMedCrossRefGoogle Scholar
  8. 8.
    Chalupka AN, Talmor D (2012) The economics of sepsis. Crit Care Clin 28:57–76, viPubMedCrossRefGoogle Scholar
  9. 9.
    Martin GS, Mannino DM, Eaton S, Moss M (2003) The epidemiology of sepsis in the United States from 1979 through 2000. N Engl J Med 348:1546–1554PubMedCrossRefGoogle Scholar
  10. 10.
    Wood KA, Angus DC (2004) Pharmacoeconomic implications of new therapies in sepsis. Pharmacoeconomics 22:895–906PubMedCrossRefGoogle Scholar
  11. 11.
    Vincent JL, Sakr Y, Sprung CL, Ranieri VM, Reinhart K, Gerlach H, Moreno R, Carlet J, Le Gall JR, Payen D (2006) Sepsis in European intensive care units: results of the SOAP study. Crit Care Med 34:344–353PubMedCrossRefGoogle Scholar
  12. 12.
    Hotchkiss RS, Karl IE (2003) The pathophysiology and treatment of sepsis. N Engl J Med 348:138–150PubMedCrossRefGoogle Scholar
  13. 13.
    Vincent JL, Opal SM, Marshall JC, Tracey KJ (2013) Sepsis definitions: time for change. Lancet 381:774–775PubMedCrossRefGoogle Scholar
  14. 14.
    Medzhitov R, Shevach EM, Trinchieri G, Mellor AL, Munn DH, Gordon S, Libby P, Hansson GK, Shortman K, Dong C, Gabrilovich D, Gabrysova L, Howes A, O’Garra A (2011) Highlights of 10 years of immunology in Nature Reviews Immunology. Nat Rev Immunol 11:693–702PubMedCentralPubMedCrossRefGoogle Scholar
  15. 15.
    Janeway CAJ, Medzhitov R (2002) Innate immune recognition. Annu Rev Immunol 20:197–216PubMedCrossRefGoogle Scholar
  16. 16.
    Medzhitov R (2007) Recognition of microorganisms and activation of the immune response. Nature 449:819–826PubMedCrossRefGoogle Scholar
  17. 17.
    Lotze MT, Tracey KJ (2005) High-mobility group box 1 protein (HMGB1): nuclear weapon in the immune arsenal. Nat Rev Immunol 5:331–342PubMedCrossRefGoogle Scholar
  18. 18.
    Annane D, Bellissant E, Cavaillon JM (2005) Septic shock. Lancet 365:63–78PubMedCrossRefGoogle Scholar
  19. 19.
    Medzhitov R (2001) Toll-like receptors and innate immunity. Nat Rev Immunol 1:135–145PubMedCrossRefGoogle Scholar
  20. 20.
    Aksoy E, Taboubi S, Torres D, Delbauve S, Hachani A, Whitehead MA, Pearce WP, Berenjeno-Martin I, Nock G, Filloux A, Beyaert R, Flamand V, Vanhaesebroeck B (2012) The p110delta isoform of the kinase PI(3)K controls the subcellular compartmentalization of TLR4 signaling and protects from endotoxic shock. Nat Immunol 13:1045–1054PubMedCrossRefGoogle Scholar
  21. 21.
    Kayagaki N, Warming S, Lamkanfi M, Vande Walle L, Louie S, Dong J, Newton K, Qu Y, Liu J, Heldens S, Zhang J, Lee WP, Roose-Girma M, Dixit VM (2011) Non-canonical inflammasome activation targets caspase-11. Nature 479:117–121PubMedCrossRefGoogle Scholar
  22. 22.
    Kayagaki N, Wong MT, Stowe IB, Ramani SR, Gonzalez LC, Akashi-Takamura S, Miyake K, Zhang J, Lee WP, Muszynski A, Forsberg LS, Carlson RW, Dixit VM (2013) Noncanonical inflammasome activation by intracellular LPS independent of TLR4. Science 341:1246–1249PubMedCrossRefGoogle Scholar
  23. 23.
    Hagar JA, Powell DA, Aachoui Y, Ernst RK, Miao EA (2013) Cytoplasmic LPS activates caspase-11: implications in TLR4-independent endotoxic shock. Science 341:1250–1253PubMedCrossRefGoogle Scholar
  24. 24.
    Opal SM, Laterre PF, Francois B, LaRosa SP, Angus DC, Mira JP, Wittebole X, Dugernier T, Perrotin D, Tidswell M, Jauregui L, Krell K, Pachl J, Takahashi T, Peckelsen C, Cordasco E, Chang CS, Oeyen S, Aikawa N, Maruyama T, Schein R, Kalil AC, Van Nuffelen M, Lynn M, Rossignol DP, Gogate J, Roberts MB, Wheeler JL, Vincent JL (2013) Effect of eritoran, an antagonist of MD2-TLR4, on mortality in patients with severe sepsis: the ACCESS randomized trial. JAMA 309:1154–1162PubMedCrossRefGoogle Scholar
  25. 25.
    Kelly-Scumpia KM, Scumpia PO, Weinstein JS, Delano MJ, Cuenca AG, Nacionales DC, Wynn JL, Lee PY, Kumagai Y, Efron PA, Akira S, Wasserfall C, Atkinson MA, Moldawer LL (2011) B cells enhance early innate immune responses during bacterial sepsis. J Exp Med 208:1673–1682PubMedCentralPubMedCrossRefGoogle Scholar
  26. 26.
    Baumgarth N (2011) The double life of a B-1 cell: self-reactivity selects for protective effector functions. Nat Rev Immunol 11:34–46PubMedCrossRefGoogle Scholar
  27. 27.
    Cohen IR, Norins LC (1968) Antibiodies of the IgG, IgM, and IgA classes in newborn and adult sera reactive with gram-negative bacteria. J Clin Invest 47:1053–1062PubMedCentralPubMedCrossRefGoogle Scholar
  28. 28.
    Ehrenstein MR, Notley CA (2010) The importance of natural IgM: scavenger, protector and regulator. Nat Rev Immunol 10:778–786PubMedCrossRefGoogle Scholar
  29. 29.
    Litvack ML, Post M, Palaniyar N (2011) IgM promotes the clearance of small particles and apoptotic microparticles by macrophages. PLoS One 6:e17223PubMedCentralPubMedCrossRefGoogle Scholar
  30. 30.
    Rauch PJ, Chudnovskiy A, Robbins CS, Weber GF, Etzrodt M, Hilgendorf I, Tiglao E, Figueiredo JL, Iwamoto Y, Theurl I, Gorbatov R, Waring MT, Chicoine AT, Mouded M, Pittet MJ, Nahrendorf M, Weissleder R, Swirski FK (2012) Innate response activator B cells protect against microbial sepsis. Science 335:597–601PubMedCentralPubMedCrossRefGoogle Scholar
  31. 31.
    Hamilton JA (2008) Colony-stimulating factors in inflammation and autoimmunity. Nat Rev Immunol 8:533–544PubMedCrossRefGoogle Scholar
  32. 32.
    Hamilton JA, Achuthan A (2012) Colony stimulating factors and myeloid cell biology in health and disease. Trends Immunol 34(2):81–9PubMedCrossRefGoogle Scholar
  33. 33.
    Yousefi S, Gold JA, Andina N, Lee JJ, Kelly AM, Kozlowski E, Schmid I, Straumann A, Reichenbach J, Gleich GJ, Simon HU (2008) Catapult-like release of mitochondrial DNA by eosinophils contributes to antibacterial defense. Nat Med 14:949–953PubMedCrossRefGoogle Scholar
  34. 34.
    Linch SN, Danielson ET, Kelly AM, Tamakawa RA, Lee JJ, Gold JA (2012) Interleukin 5 is protective during sepsis in an eosinophil-independent manner. Am J Respir Crit Care Med 186:246–254PubMedCrossRefGoogle Scholar
  35. 35.
    Nathan C (2002) Points of control in inflammation. Nature 420:846–852PubMedCrossRefGoogle Scholar
  36. 36.
    Nathan C (2006) Neutrophils and immunity: challenges and opportunities. Nat Rev Immunol 6:173–182PubMedCrossRefGoogle Scholar
  37. 37.
    Spiller F, Costa C, Souto FO, Vinchi F, Mestriner FL, Laure HJ, Alves-Filho JC, Freitas A, Rosa JC, Ferreira SH, Altruda F, Hirsch E, Greene LJ, Tolosano E, Cunha FQ (2011) Inhibition of neutrophil migration by hemopexin leads to increased mortality due to sepsis in mice. Am J Respir Crit Care Med 183:922–931PubMedCrossRefGoogle Scholar
  38. 38.
    Ihle JN, Pepersack L, Rebar L (1981) Regulation of T cell differentiation: in vitro induction of 20 alpha-hydroxysteroid dehydrogenase in splenic lymphocytes from athymic mice by a unique lymphokine. J Immunol 126:2184–2189PubMedGoogle Scholar
  39. 39.
    Yang YC, Ciarletta AB, Temple PA, Chung MP, Kovacic S, Witek-Giannotti JS, Leary AC, Kriz R, Donahue RE, Wong GG et al (1986) Human IL-3 (multi-CSF): identification by expression cloning of a novel hematopoietic growth factor related to murine IL-3. Cell 47:3–10PubMedCrossRefGoogle Scholar
  40. 40.
    Langley RJ, Tsalik EL, Velkinburgh JC, Glickman SW, Rice BJ, Wang C, Chen B, Carin L, Suarez A, Mohney RP, Freeman DH, Wang M, You J, Wulff J, Thompson JW, Moseley MA, Reisinger S, Edmonds BT, Grinnell B, Nelson DR, Dinwiddie DL, Miller NA, Saunders CJ, Soden SS, Rogers AJ, Gazourian L, Fredenburgh LE, Massaro AF, Baron RM, Choi AM, Corey GR, Ginsburg GS, Cairns CB, Otero RM, Fowler VGJ, Rivers EP, Woods CW, Kingsmore SF (2013) An integrated clinico-metabolomic model improves prediction of death in sepsis. Sci Transl Med 5:195ra95PubMedCrossRefGoogle Scholar
  41. 41.
    Hoebe K, Janssen E, Beutler B (2004) The interface between innate and adaptive immunity. Nat Immunol 5:971–974PubMedCrossRefGoogle Scholar
  42. 42.
    Hotchkiss RS, Opal S (2010) Immunotherapy for sepsis—a new approach against an ancient foe. N Engl J Med 363:87–89PubMedCrossRefGoogle Scholar
  43. 43.
    Otto GP, Sossdorf M, Claus RA, Rodel J, Menge K, Reinhart K, Bauer M, Riedemann NC (2011) The late phase of sepsis is characterized by an increased microbiological burden and death rate. Crit Care 15:R183PubMedCrossRefGoogle Scholar
  44. 44.
    Ward PA (2012) New approaches to the study of sepsis. EMBO Mol Med 4:1234–1243PubMedCentralPubMedCrossRefGoogle Scholar
  45. 45.
    Boomer JS, To K, Chang KC, Takasu O, Osborne DF, Walton AH, Bricker TL, Jarman SD, Kreisel D, Krupnick AS, Srivastava A, Swanson PE, Green JM, Hotchkiss RS (2011) Immunosuppression in patients who die of sepsis and multiple organ failure. JAMA 306:2594–2605PubMedCentralPubMedCrossRefGoogle Scholar
  46. 46.
    Inoue S, Suzuki-Utsunomiya K, Okada Y, Taira T, Iida Y, Miura N, Tsuji T, Yamagiwa T, Morita S, Chiba T, Sato T, Inokuchi S (2013) Reduction of immunocompetent T cells followed by prolonged lymphopenia in severe sepsis in the elderly. Crit Care Med 41:810–819PubMedCrossRefGoogle Scholar
  47. 47.
    Lee SY, Lee YS, Choi HM, Ko YS, Lee HY, Jo SK, Cho WY, Kim HK (2012) Distinct pathophysiologic mechanisms of septic acute kidney injury: role of immune suppression and renal tubular cell apoptosis in murine model of septic acute kidney injury. Crit Care Med 40:2997–3006PubMedCrossRefGoogle Scholar
  48. 48.
    Teijaro JR, Ng C, Lee AM, Sullivan BM, Sheehan KC, Welch M, Schreiber RD, de la Torre JC, Oldstone MB (2013) Persistent LCMV infection is controlled by blockade of type I interferon signaling. Science 340:207–211PubMedCentralPubMedCrossRefGoogle Scholar
  49. 49.
    Kelly-Scumpia KM, Scumpia PO, Delano MJ, Weinstein JS, Cuenca AG, Wynn JL, Moldawer LL (2010) Type I interferon signaling in hematopoietic cells is required for survival in mouse polymicrobial sepsis by regulating CXCL10. J Exp Med 207:319–326PubMedCentralPubMedCrossRefGoogle Scholar
  50. 50.
    Hoetzenecker W, Echtenacher B, Guenova E, Hoetzenecker K, Woelbing F, Bruck J, Teske A, Valtcheva N, Fuchs K, Kneilling M, Park JH, Kim KH, Kim KW, Hoffmann P, Krenn C, Hai T, Ghoreschi K, Biedermann T, Rocken M (2012) ROS-induced ATF3 causes susceptibility to secondary infections during sepsis-associated immunosuppression. Nat Med 18:128–134CrossRefGoogle Scholar
  51. 51.
    Turrel-Davin F, Venet F, Monnin C, Barbalat V, Cerrato E, Pachot A, Lepape A, Alberti-Segui C, Monneret G (2011) mRNA-based approach to monitor recombinant gamma-interferon restoration of LPS-induced endotoxin tolerance. Crit Care 15:R252PubMedCrossRefGoogle Scholar
  52. 52.
    Pillay J, Kamp VM, van Hoffen E, Visser T, Tak T, Lammers JW, Ulfman LH, Leenen LP, Pickkers P, Koenderman L (2012) A subset of neutrophils in human systemic inflammation inhibits T cell responses through Mac-1. J Clin Invest 122:327–336PubMedCentralPubMedCrossRefGoogle Scholar
  53. 53.
    Lukaszewicz AC, Grienay M, Resche-Rigon M, Pirracchio R, Faivre V, Boval B, Payen D (2009) Monocytic HLA-DR expression in intensive care patients: interest for prognosis and secondary infection prediction. Crit Care Med 37:2746–2752PubMedCrossRefGoogle Scholar
  54. 54.
    Wu HP, Shih CC, Lin CY, Hua CC, Chuang DY (2011) Serial increase of IL-12 response and human leukocyte antigen-DR expression in severe sepsis survivors. Crit Care 15:R224PubMedCrossRefGoogle Scholar
  55. 55.
    Pachot A, Cazalis MA, Venet F, Turrel F, Faudot C, Voirin N, Diasparra J, Bourgoin N, Poitevin F, Mougin B, Lepape A, Monneret G (2008) Decreased expression of the fractalkine receptor CX3CR1 on circulating monocytes as new feature of sepsis-induced immunosuppression. J Immunol 180:6421–6429PubMedGoogle Scholar
  56. 56.
    Grimaldi D, Louis S, Pene F, Sirgo G, Rousseau C, Claessens YE, Vimeux L, Cariou A, Mira JP, Hosmalin A, Chiche JD (2011) Profound and persistent decrease of circulating dendritic cells is associated with ICU-acquired infection in patients with septic shock. Intensive Care Med 37:1438–1446PubMedCrossRefGoogle Scholar
  57. 57.
    Pastille E, Didovic S, Brauckmann D, Rani M, Agrawal H, Schade FU, Zhang Y, Flohe SB (2011) Modulation of dendritic cell differentiation in the bone marrow mediates sustained immunosuppression after polymicrobial sepsis. J Immunol 186:977–986PubMedCrossRefGoogle Scholar
  58. 58.
    Zhang Y, Zhou Y, Lou J, Li J, Bo L, Zhu K, Wan X, Deng X, Cai Z (2010) PD-L1 blockade improves survival in experimental sepsis by inhibiting lymphocyte apoptosis and reversing monocyte dysfunction. Crit Care 14:R220PubMedCrossRefGoogle Scholar
  59. 59.
    Anderson P, Souza-Moreira L, Morell M, Caro M, O’Valle F, Gonzalez-Rey E, Delgado M (2013) Adipose-derived mesenchymal stromal cells induce immunomodulatory macrophages which protect from experimental colitis and sepsis. Gut 62:1131–1141PubMedCrossRefGoogle Scholar
  60. 60.
    Cohen HB, Briggs KT, Marino JP, Ravid K, Robson SC, Mosser DM (2013) TLR stimulation initiates a CD39-based autoregulatory mechanism that limits macrophage inflammatory responses. Blood 122(11):1935–45PubMedCrossRefGoogle Scholar
  61. 61.
    Brudecki L, Ferguson DA, McCall CE, El Gazzar M (2012) Adoptive transfer of CD34(+) cells during murine sepsis rebalances macrophage lipopolysaccharide responses. Immunol Cell Biol 90:925–934PubMedCrossRefGoogle Scholar
  62. 62.
    Brudecki L, Ferguson DA, Yin D, Lesage GD, McCall CE, El Gazzar M (2012) Hematopoietic stem-progenitor cells restore immunoreactivity and improve survival in late sepsis. Infect Immun 80:602–611PubMedCentralPubMedCrossRefGoogle Scholar
  63. 63.
    Hoogerwerf JJ, Leendertse M, Wieland CW, de Vos AF, de Boer JD, Florquin S, van der Poll T (2011) Loss of suppression of tumorigenicity 2 (ST2) gene reverses sepsis-induced inhibition of lung host defense in mice. Am J Respir Crit Care Med 183:932–940PubMedCrossRefGoogle Scholar
  64. 64.
    Deng JC, Cheng G, Newstead MW, Zeng X, Kobayashi K, Flavell RA, Standiford TJ (2006) Sepsis-induced suppression of lung innate immunity is mediated by IRAK-M. J Clin Invest 116:2532–2542PubMedCentralPubMedGoogle Scholar
  65. 65.
    Wiersinga WJ, van’t Veer C, van den Pangaart PS, Dondorp AM, Day NP, Peacock SJ, van der Poll T (2009) Immunosuppression associated with interleukin-1R-associated-kinase-M upregulation predicts mortality in Gram-negative sepsis (melioidosis). Crit Care Med 37:569–576PubMedCrossRefGoogle Scholar
  66. 66.
    Weber GF, Schlautkotter S, Kaiser-Moore S, Altmayr F, Holzmann B, Weighardt H (2007) Inhibition of interleukin-22 attenuates bacterial load and organ failure during acute polymicrobial sepsis. Infect Immun 75:1690–1697PubMedCentralPubMedCrossRefGoogle Scholar
  67. 67.
    Flierl MA, Rittirsch D, Gao H, Hoesel LM, Nadeau BA, Day DE, Zetoune FS, Sarma JV, Huber-Lang MS, Ferrara JL, Ward PA (2008) Adverse functions of IL-17A in experimental sepsis. FASEB J 22:2198–2205PubMedCrossRefGoogle Scholar
  68. 68.
    Bingold TM, Ziesche E, Scheller B, Sadik CD, Franck K, Just L, Sartorius S, Wahrmann M, Wissing H, Zwissler B, Pfeilschifter J, Muhl H (2010) Interleukin-22 detected in patients with abdominal sepsis. Shock 34:337–340PubMedCrossRefGoogle Scholar
  69. 69.
    Nakada TA, Russell JA, Boyd JH, Walley KR (2011) IL17A genetic variation is associated with altered susceptibility to Gram-positive infection and mortality of severe sepsis. Crit Care 15:R254PubMedCrossRefGoogle Scholar
  70. 70.
    Brunialti MK, Santos MC, Rigato O, Machado FR, Silva E, Salomao R (2012) Increased percentages of T helper cells producing IL-17 and monocytes expressing markers of alternative activation in patients with sepsis. PLoS One 7:e37393PubMedCrossRefGoogle Scholar
  71. 71.
    Schuetz P, Castro P, Shapiro NI (2011) Diabetes and sepsis: preclinical findings and clinical relevance. Diabetes Care 34:771–778PubMedCrossRefGoogle Scholar
  72. 72.
    Seok J, Warren HS, Cuenca AG, Mindrinos MN, Baker HV, Xu W, Richards DR, McDonald-Smith GP, Gao H, Hennessy L, Finnerty CC, Lopez CM, Honari S, Moore EE, Minei JP, Cuschieri J, Bankey PE, Johnson JL, Sperry J, Nathens AB, Billiar TR, West MA, Jeschke MG, Klein MB, Gamelli RL, Gibran NS, Brownstein BH, Miller-Graziano C, Calvano SE, Mason PH, Cobb JP, Rahme LG, Lowry SF, Maier RV, Moldawer LL, Herndon DN, Davis RW, Xiao W, Tompkins RG (2013) Genomic responses in mouse models poorly mimic human inflammatory diseases. Proc Natl Acad Sci U S A 110:3507–3512PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Department of Surgery, University Hospital Carl Gustav CarusTechnical University DresdenDresdenGermany
  2. 2.Center for Systems BiologyMassachusetts General Hospital and Harvard Medical SchoolBostonUSA

Personalised recommendations