Skip to main content

Advertisement

Log in

Preoperative short-term parenteral administration of polyunsaturated fatty acids ameliorates intestinal inflammation and postoperative ileus in rodents

  • Original Article
  • Published:
Langenbeck's Archives of Surgery Aims and scope Submit manuscript

Abstract

Purpose

Abdominal surgery results in an inflammation of the intestinal muscularis externa (ME), subsequently leading to postoperative ileus (POI). Polyunsaturated fatty acids (PUFA) are known to modulate inflammation. The aim of this study was to analyze the effect of preoperative parenteral administration of marine (n-3) or soybean (n-6) PUFA lipid emulsions (PUFA-LE) on POI and tissue fatty acid profiles.

Methods

Rodents underwent intestinal manipulation (IM) after 5 days of parenteral administration of 10-mL/kg body weight saline, (n-3), or (n-6) PUFA-LE. Sham animals received saline treatment without IM. In rats, postoperative inflammation was quantified by ME neutrophil levels and NO production in organ culture, and ME function was determined by an in vitro contractility measurement. Additionally, in vivo gastrointestinal transit (GIT) was analyzed in mice. Lipopolysaccharide-induced IL-6 expression of rat bone marrow-derived mononuclear cells and ME was analyzed. Fatty acids were measured by gas chromatography in rat blood, bone marrow cells, and ME.

Results

The (n-3) PUFA-LE reduced neutrophil levels and NO production after IM and improved in vitro jejunal contractility and GIT time. The (n-6) PUFA-LE significantly reduced postoperative inflammation and tended to improve intestinal motility (P < 0.06). Interestingly, (n-6) PUFA-LE significantly reduced the levels of arachidonic acid in ME (−63%), while (n-3) PUFA-LE reduced arachidonic acid (−20%) and additionally raised EPA (+550%).

Conclusion

Short-term preoperative parenteral administration of (n-3) or (n-6) PUFA-LE significantly alters tissue-specific fatty acid profiles. Preoperative parenteral PUFA-LE supplementation, preferably by marine (n-3) PUFA, ameliorates postoperative intestinal inflammation and dysmotility and could be a promising therapeutic option in POI prophylaxis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

BMC:

Bone marrow cells

BMDMC:

Bone marrow-derived mononuclear cells

COX-2:

Cyclooxygenase II

DHA:

Docosahexaenoic acid

EPA:

Eicosapentaenoic acid

FA:

Fatty acids

GIT:

Gastrointestinal transit

IM:

Intestinal manipulation

KHB:

Krebs–Henseleit buffer

Lipo10-IM:

Lipovenös PLR 10% treated animals that underwent IM

LPS:

Lipopolysaccharide

ME:

Muscularis externa

MPO:

Myeloperoxidase

NaCl-IM:

0.9% saline treated animals that underwent IM

Omegaven-IM:

Omegaven-treated animals that underwent IM

POI:

Postoperative ileus

PUFA:

Polyunsaturated fatty acids

PUFA-LE:

PUFA-enriched lipid emulsions

Sham:

0.9% saline-treated animals

References

  1. Prasad M, Matthews JB (1999) Deflating postoperative ileus. Gastroenterology 117(2):489–492

    Article  PubMed  CAS  Google Scholar 

  2. Livingston EH, Passaro EP Jr (1990) Postoperative ileus. Dig Dis Sci 35(1):121–132

    Article  PubMed  CAS  Google Scholar 

  3. Kraft MD (2008) Methylnaltrexone, a new peripherally acting mu-opioid receptor antagonist being evaluated for the treatment of postoperative ileus. ExpertOpinInvestigDrugs 17(9):1365–1377

    CAS  Google Scholar 

  4. Kalff JC, Schraut WH, Simmons RL, Bauer AJ (1998) Surgical manipulation of the gut elicits an intestinal muscularis inflammatory response resulting in postsurgical ileus. Ann Surg 228(5):652–663

    Article  PubMed  CAS  Google Scholar 

  5. Wehner S, Schwarz NT, Hundsdoerfer R, Hierholzer C, Tweardy DJ, Billiar TR, Bauer AJ, Kalff JC (2005) Induction of IL-6 within the rodent intestinal muscularis after intestinal surgical stress. Surgery 137(4):436–446

    Article  PubMed  Google Scholar 

  6. Kalff JC, Carlos TM, Schraut WH, Billiar TR, Bauer AJ (1999) Surgically induced leukocytic infiltrates within the rat intestinal muscularis mediate postoperative ileus. Gastroenterology 117:378–387

    Article  PubMed  CAS  Google Scholar 

  7. Kalff JC, Schraut WH, Billiar TR, Simmons RL, Bauer AJ (2000) Role of inducible nitric oxide synthase in postoperative intestinal smooth muscle dysfunction in rodents. Gastroenterology 118(2):316–327

    Article  PubMed  CAS  Google Scholar 

  8. Schwarz NT, Kalff JC, Turler A, Engel BM, Watkins SC, Billiar TR, Bauer AJ (2001) Prostanoid production via COX-2 as a causative mechanism of rodent postoperative ileus. Gastroenterology 121(6):1354–1371

    Article  PubMed  CAS  Google Scholar 

  9. Engel DR, Koscielny A, Wehner S, Maurer J, Schiwon M, Franken L, Schumak B, Limmer A, Sparwasser T, Hirner A, Knolle PA, Kalff JC, Kurts C (2010) T helper type 1 memory cells disseminate postoperative ileus over the entire intestinal tract. NatMed 16(12):1407–1413

    CAS  Google Scholar 

  10. Wehner S, Behrendt FF, Lyutenski BN, Lysson M, Bauer AJ, Hirner A, Kalff JC (2007) Inhibition of macrophage function prevents intestinal inflammation and postoperative ileus in rodents. Gut 56(2):176–185

    Article  PubMed  CAS  Google Scholar 

  11. Wehner S, Straesser S, Vilz TO, Pantelis D, Sielecki T, de la Cruz V, Hirner A, Kalff JC (2009) Inhibition of p38 mitogen-activated protein kinase pathway as prophylaxis of postoperative ileus in mice. Gastroenterology 136(2):619–629

    Article  PubMed  CAS  Google Scholar 

  12. Bauer AJ, Boeckxstaens GE (2004) Mechanisms of postoperative ileus. NeurogastroenterolMotil 16(Suppl 2):54–60

    Article  Google Scholar 

  13. Holte K, Kehlet H (2000) Postoperative ileus: a preventable event. BrJSurg 87(11):1480–1493

    CAS  Google Scholar 

  14. Mattei P, Rombeau JL (2006) Review of the pathophysiology and management of postoperative ileus. World JSurg 30(8):1382–1391

    Article  Google Scholar 

  15. Waitzberg DL, Torrinhas RS (2009) Fish oil lipid emulsions and immune response: what clinicians need to know. NutrClinPract 24(4):487–499

    Google Scholar 

  16. Lanza-Jacoby S, Flynn JT, Miller S (2001) Parenteral supplementation with a fish-oil emulsion prolongs survival and improves rat lymphocyte function during sepsis. Nutrition 17(2):112–116

    Article  PubMed  CAS  Google Scholar 

  17. Pscheidl E, Schywalsky M, Tschaikowsky K, Boke-Prols T (2000) Fish oil-supplemented parenteral diets normalize splanchnic blood flow and improve killing of translocated bacteria in a low-dose endotoxin rat model. Crit Care Med 28(5):1489–1496

    Article  PubMed  CAS  Google Scholar 

  18. Mayer K, Fegbeutel C, Hattar K, Sibelius U, Kramer HJ, Heuer KU, Temmesfeld-Wollbruck B, Gokorsch S, Grimminger F, Seeger W (2003) Omega-3 vs. omega-6 lipid emulsions exert differential influence on neutrophils in septic shock patients: impact on plasma fatty acids and lipid mediator generation. Intensive Care Med 29(9):1472–1481

    Article  PubMed  Google Scholar 

  19. Mayer K, Gokorsch S, Fegbeutel C, Hattar K, Rosseau S, Walmrath D, Seeger W, Grimminger F (2003) Parenteral nutrition with fish oil modulates cytokine response in patients with sepsis. AmJRespirCrit Care Med 167(10):1321–1328

    Article  Google Scholar 

  20. Ali S, Roberts PR (2006) Nutrients with immune-modulating effects: what role should they play in the intensive care unit? CurrOpinAnaesthesiol 19(2):132–139

    Google Scholar 

  21. Calder PC (2004) n-3 fatty acids, inflammation, and immunity—relevance to postsurgical and critically ill patients. Lipids 39(12):1147–1161

    Article  PubMed  CAS  Google Scholar 

  22. Calder PC (2006) n-3 polyunsaturated fatty acids, inflammation, and inflammatory diseases. AmJClinNutr 83(6 Suppl):1505S–1519S

    CAS  Google Scholar 

  23. Calder PC (2010) The 2008 ESPEN Sir David Cuthbertson Lecture: fatty acids and inflammation—from the membrane to the nucleus and from the laboratory bench to the clinic. ClinNutr 29(1):5–12

    CAS  Google Scholar 

  24. Dragusin M, Wehner S, Kelly S, Wang E, Merrill AH, Jr., Kalff JC, Echten-Deckert G (2006) Effects of sphingosine-1-phosphate and ceramide-1-phosphate on rat intestinal smooth muscle cells: implications for postoperative ileus. FASEB J

  25. Schmidt J, Stoffels B, Nazir A, Haven-Hudkins DL, Bauer AJ (2008) Alvimopan and COX-2 inhibition reverse opioid and inflammatory components of postoperative ileus. NeurogastroenterolMotil 20(6):689–699

    Article  CAS  Google Scholar 

  26. Kreiss C, Birder LA, Kiss S, VanBibber MM, Bauer AJ (2003) COX-2 dependent inflammation increases spinal Fos expression during rodent postoperative ileus. Gut 52(4):527–534

    Article  PubMed  CAS  Google Scholar 

  27. Grasa L, Arruebo MP, Plaza MA, Murillo MD (2006) PGE(2) receptors and their intracellular mechanisms in rabbit small intestine. Prostaglandins Other Lipid Mediat 79(3–4):206–217

    Article  PubMed  CAS  Google Scholar 

  28. Story SK, Chamberlain RS (2009) A comprehensive review of evidence-based strategies to prevent and treat postoperative ileus. Dig Surg 26(4):265–275

    Article  PubMed  Google Scholar 

  29. Folch J, Lees M, Sloane Stanley GH (1957) A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem 226(1):497–509

    PubMed  CAS  Google Scholar 

  30. Rodriguez Y, Christophe AB (2004) Effect of diabetes mellitus and different treatments on plasma and erythrocyte phospholipid fatty acid composition in type 2 diabetics. AnnNutrMetab 48(5):335–342

    CAS  Google Scholar 

  31. Kalff JC, Schwarz NT, Walgenbach KJ, Schraut WH, Bauer AJ (1998) Leukocytes of the intestinal muscularis externa: their phenotype and isolation. J Leukoc Biol 63:683–691

    PubMed  CAS  Google Scholar 

  32. The FO, de Jonge WJ, Bennink RJ, van den Wijngaard RM, Boeckxstaens GE (2005) The ICAM-1 antisense oligonucleotide ISIS-3082 prevents the development of postoperative ileus in mice. Br J Pharmacol 146(2):252–258

    Article  PubMed  CAS  Google Scholar 

  33. Turler A, Kalff JC, Moore BA, Hoffman RA, Billiar TR, Simmons RL, Bauer AJ (2006) Leukocyte-derived inducible nitric oxide synthase mediates murine postoperative ileus. Ann Surg 244(2):220–229

    Article  PubMed  Google Scholar 

  34. The FO, Boeckxstaens GE, Snoek SA, Cash JL, Bennink R, Larosa GJ, van den Wijngaard RM, Greaves DR, de Jonge WJ (2007) Activation of the cholinergic anti-inflammatory pathway ameliorates postoperative ileus in mice. Gastroenterology 133(4):1219–1228

    Article  PubMed  CAS  Google Scholar 

  35. de Jonge WJ, The FO, van der Coelen D, Bennink RJ, Reitsma PH, van Deventer SJ, van den Wijngaard RM, Boeckxstaens GE (2004) Mast cell degranulation during abdominal surgery initiates postoperative ileus in mice. Gastroenterology 127(2):535–545

    Article  PubMed  Google Scholar 

  36. Moore BA, Otterbein LE, Turler A, Choi AM, Bauer AJ (2003) Inhaled carbon monoxide suppresses the development of postoperative ileus in the murine small intestine. Gastroenterology 124(2):377–391

    Article  PubMed  CAS  Google Scholar 

  37. De BO, Elinck E, Blanckaert B, Leybaert L, Motterlini R, Lefebvre RA (2009) Water-soluble CO-releasing molecules reduce the development of postoperative ileus via modulation of MAPK/HO-1 signalling and reduction of oxidative stress. Gut 58(3):347–356

    Article  Google Scholar 

  38. The FO, Bennink RJ, Ankum WM, Buist MR, Busch OR, Gouma DJ, van der Heidi S, van den Wijngaard RM, de Jonge WJ, Boeckxstaens GE (2008) Intestinal handling-induced mast cell activation and inflammation in human postoperative ileus. Gut 57(1):33–40

    Article  PubMed  CAS  Google Scholar 

  39. Heeb EA, Baker RS, Lam C, Basu M, Lubbers W, Duffy JY, Eghtesady P (2009) Role of natriuretic peptides in cGMP production in fetal cardiac bypass. Ann Thorac Surg 87(3):841–847. doi:10.1016/j.athoracsur.2008.12.022

    Article  PubMed  Google Scholar 

  40. Luyer MD, Greve JW, Hadfoune M, Jacobs JA, Dejong CH, Buurman WA (2005) Nutritional stimulation of cholecystokinin receptors inhibits inflammation via the vagus nerve. J Exp Med 202(8):1023–1029

    Article  PubMed  CAS  Google Scholar 

  41. Tracey KJ (2005) Fat meets the cholinergic antiinflammatory pathway. J Exp Med 202(8):1017–1021

    Article  PubMed  CAS  Google Scholar 

  42. Senkal M, Geier B, Hannemann M, Deska T, Linseisen J, Wolfram G, Adolph M (2007) Supplementation of omega-3 fatty acids in parenteral nutrition beneficially alters phospholipid fatty acid pattern. JPEN JParenterEnteral Nutr 31(1):12–17

    Article  CAS  Google Scholar 

  43. Hagi A, Nakayama M, Shinzaki W, Haji S, Ohyanagi H (2010) Effects of the omega-6:omega-3 fatty acid ratio of fat emulsions on the fatty acid composition in cell membranes and the anti-inflammatory action. JPEN JParenterEnteral Nutr 34(3):263–270

    Article  CAS  Google Scholar 

  44. Luo M, Fernandez-Estivariz C, Jones DP, Accardi CR, Alteheld B, Bazargan N, Hao L, Griffith DP, Blumberg JB, Galloway JR, Ziegler TR (2008) Depletion of plasma antioxidants in surgical intensive care unit patients requiring parenteral feeding: effects of parenteral nutrition with or without alanyl-glutamine dipeptide supplementation. Nutrition 24(1):37–44

    Article  PubMed  CAS  Google Scholar 

  45. De Winter BY, van Nassauw L, De Man JG, de Jonge F, Bredenoord AJ, Seerden TC, Herman AG, Timmermans JP, Pelckmans PA (2005) Role of oxidative stress in the pathogenesis of septic ileus in mice. NeurogastroenterolMotil 17(2):251–261

    Article  Google Scholar 

  46. Ohno T, Mochiki E, Ando H, Fukasawa T, Toyomasu Y, Ogata K, Aihara R, Asao T, Kuwano H (2009) Glutamine decreases the duration of postoperative ileus after abdominal surgery: an experimental study of conscious dogs. Dig Dis Sci 54(6):1208–1213

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by grants from the DFG (KA1270/3-3) and Fresenius Kabi (N-012.0081).

Conflicts of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joerg C. Kalff.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Online Resource 1

Compositions of Omegaven and Lipo10. (PDF 11.2 kb)

Online Resource 2

ME fatty acid contents of rats treated with NaCl, Omegaven or Lipo10 for 5d. (PDF 25.2 kb)

OnlineResource 3

BMC fatty acid contents of rats treated with NaCl, Omegaven or Lipo10 for 5d. (PDF 27.0 kb)

Online Resource 4

Erythrocytes fatty acid contents of rats treated with NaCl, Omegaven or Lipo10 for 5d. (PDF 24.5 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wehner, S., Meder, K., Vilz, T.O. et al. Preoperative short-term parenteral administration of polyunsaturated fatty acids ameliorates intestinal inflammation and postoperative ileus in rodents. Langenbecks Arch Surg 397, 307–315 (2012). https://doi.org/10.1007/s00423-011-0862-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00423-011-0862-z

Keywords

Navigation