Skip to main content

Advertisement

Log in

Caerulein or taurocholate induced enzymatic and histologic alterations in the isolated perfused rat pancreas

  • Original Article
  • Published:
Langenbeck's Archives of Surgery Aims and scope Submit manuscript

Abstract

Background

Early events in the pathogenesis of experimental acute pancreatitis are intensively studied using isolated cells or animal models. However, the results and their interpretations are dependent on the complexity of biological structures. Therefore, we proposed that studies on isolated perfused pancreas can give additional information about processes leading to acinar cell injury. This hypothesis was examined adapting the well-established caerulein hyperstimulation model and the taurocholate model of acute pancreatitis to the extracorporeal perfused isolated rat pancreas.

Materials and methods

The pancreas was removed with the duodenum including the arterial supply. A continuous perfusion of the organ was performed with a modified Krebs–Ringer bicarbonate buffer. Intraarterial caerulein application or an intraductal taurocholate (3.5%) application were used to induce acinar cell injury which was determined as the release of amylase, lipase and lactate dehydrogenase into the portal outflow medium and into the transudation fluid and by examination of histological alterations. Trypsinogen release and activation was followed by analysis of trypsinogen activation peptide (TAP) in the transudation fluid and in pancreatic tissue.

Results

Perfusion of isolated rat pancreas with supramaximal concentrations of caerulein or retrograde injection of taurocholate (3.5%) resulted in acinar cell injury indicated by elevated levels of amylase and lipase into the perfusate and into the transudation fluid. TAP levels in the transudation fluid significantly increased after perfusion with caerulein or retrograde injection of taurocholate (3.5%). The histological alterations after taurocholate application include oedema and necrosis and show significant differences to the control perfusion. Extensive pancreatic necroses were not observed after caerulein hyperstimulation.

Conclusions

The isolated perfused rat pancreas is a useful model to investigate pathophysiological mechanisms which are relevant for the early phase of acute pancreatitis. The caerulein and the taurocholate models are transferable to the isolated rat pancreas. Studies on isolated perfused rat pancreas enable pathophysiological investigations of the exocrine pancreas without influence of systemic components, but with preserved morphology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Fehmann HC, Goke R, Goke B, Arnold R (1990) Carbachol priming increases glucose- and glucagon-like peptide-1 (7–36)amide-, but not arginine-induced insulin secretion from the isolated perfused rat pancreas. Z Gastroenterol 28:348–352

    PubMed  CAS  Google Scholar 

  2. Grodsky GM, Batts AA, Bennett LL, Vcella C, Williams NB, Smith DF (1963) Effects of carbohydrates on secretion of insulin from isolated rat pancreas. Am J Physiol 205:638–644

    PubMed  CAS  Google Scholar 

  3. Leclercq-Meyer V, Ladriere L, Fuhlendorff J, Malaisse WJ (1997) Stimulation of insulin and somatostatin release by two meglitinide analogs. Endocrine 7:311–317 doi:10.1007/BF02801324

    Article  PubMed  CAS  Google Scholar 

  4. MacAdams MR, Pek SB, Lands WE (1984) The effect of flurbiprofen, a potent inhibitor of prostaglandin synthesis, on insulin and glucagon release from isolated rat pancreas. Endocrinology 114:1364–1370

    Article  PubMed  CAS  Google Scholar 

  5. Schmid R, Schusdziarra V, Aulehner R, Weigert N, Classen M (1990) Comparison of GLP-1 (7–36amide) and GIP on release of somatostatin-like immunoreactivity and insulin from the isolated rat pancreas. Z Gastroenterol 28:280–284

    PubMed  CAS  Google Scholar 

  6. Flaishon R, Szold O, Weinbroum AA (2006) Acute lung injury following pancreas ischaemia–reperfusion: role of xanthine oxidase. Eur J Clin Investig 36:831–837 doi:10.1111/j.1365-2362.2006.01723.x

    Article  CAS  Google Scholar 

  7. Kihara Y, Otsuki M (1995) Different inhibitory effects of the newly developed CCK receptor antagonists FK480 and KSG-504 on pancreatic exocrine and endocrine secretion in the isolated perfused rat pancreas. Pancreas 10:109–117 doi:10.1097/00006676-199503000-00001

    Article  PubMed  CAS  Google Scholar 

  8. Kimura W, Meyer F, Hess D, Kirchner T, Fischbach W, Mossner J (1992) Comparison of different treatment modalities in experimental pancreatitis in rats. Gastroenterology 103:1916–1924

    PubMed  CAS  Google Scholar 

  9. Kimura W, Mossner J (1996) Role of hypertriglyceridemia in the pathogenesis of experimental acute pancreatitis in rats. Int J Pancreatol 20:177–184 doi:10.1007/BF02803766

    Article  PubMed  Google Scholar 

  10. McCord JM (1985) Oxygen-derived free radicals in postischemic tissue injury. N Engl J Med 312:159–163

    PubMed  CAS  Google Scholar 

  11. McCord JM (1987) Oxygen-derived radicals: a link between reperfusion injury and inflammation. Fed Proc 46:2402–2406

    PubMed  CAS  Google Scholar 

  12. McKay C, Baxter J, Imrie C (1997) A randomized, controlled trial of octreotide in the management of patients with acute pancreatitis. Int J Pancreatol 21:13–19

    PubMed  CAS  Google Scholar 

  13. Sweiry JH, Mann GE (1991) Pancreatic microvascular permeability in caerulein-induced acute pancreatitis. Am J Physiol 261:G685–G692

    PubMed  CAS  Google Scholar 

  14. Mantke R, Rocken C, Schubert D, Pross M, Sokolowski A, Halangk W et al (2002) Enzymatic and histological alterations in the isolated perfused rat pancreas under conditions of oxidative stress. Langenbeck’s Arch Surg 387:170–176 doi:10.1007/s00423-002-0297-7

    Article  CAS  Google Scholar 

  15. Spormann H, Sokolowski A, Letko G (1989) Effect of temporary ischemia upon development and histological patterns of acute pancreatitis in the rat. Pathol Res Pract 184:507–513

    PubMed  CAS  Google Scholar 

  16. Clemens JA, Olson J, Cameron JL (1991) Cerulein-induced pancreatitis in the ex vivo isolated perfused canine pancreas. Surgery 109:515–522

    PubMed  CAS  Google Scholar 

  17. Kimura W, Okubo K, Han I, Kanai S, Matsushita A, Muto T et al (1996) Effects of pancreatic duct ligation and aging on acute taurocholate-induced pancreatitis. Experiments in the perfused pancreas in rats. Int J Pancreatol 19:117–127

    PubMed  CAS  Google Scholar 

  18. Lee KY, Lee YL, Kim CD, Chang TM, Chey WY (1994) Mechanism of action of insulin on pancreatic exocrine secretion in perfused rat pancreas. Am J Physiol 267:G207–G212

    PubMed  CAS  Google Scholar 

  19. Mantke R, Schubert D, Pross M, Kahl S, Sokolowski A, Halangk W et al (2001) The isolated perfused rat pancreas—an experimental model for investigation the early events in the pathogenesis of acute pancreatitis. Zentralbl Chir 126:929–933 doi:10.1055/s-2001-19151

    Article  PubMed  CAS  Google Scholar 

  20. Sweiry JH, Munoz M, Mann GE (1991) Cis-inhibition and trans-stimulation of cationic amino acid transport in the perfused rat pancreas. Am J Physiol 261:C506–C514

    PubMed  CAS  Google Scholar 

  21. Sweiry JH, Shibuya I, Asada N, Niwa K, Doolabh K, Habara Y et al (1999) Acute oxidative stress modulates secretion and repetitive Ca2+ spiking in rat exocrine pancreas. Biochim Biophys Acta 1454:19–30

    PubMed  CAS  Google Scholar 

  22. Brunelli A, Scutti G (1998) An ultrastructural study to investigate the effect of allopurinol on cerulein-induced damage to pancreatic acinar cells in rat. Int J Pancreatol 23:25–29

    PubMed  CAS  Google Scholar 

  23. Niederau C, Ferrell LD, Grendell JH (1985) Caerulein-induced acute necrotizing pancreatitis in mice: protective effects of proglumide, benzotript, and secretin. Gastroenterology 88:1192–1204

    PubMed  CAS  Google Scholar 

  24. Niederau C, Niederau M, Borchard F, Ude K, Luthen R, Strohmeyer G et al (1992) Effects of antioxidants and free radical scavengers in three different models of acute pancreatitis. Pancreas 7:486–496

    Article  PubMed  CAS  Google Scholar 

  25. Qi W, Tan DX, Reiter RJ, Kim SJ, Manchester LC, Cabrera J et al (1999) Melatonin reduces lipid peroxidation and tissue edema in cerulein-induced acute pancreatitis in rats. Dig Dis Sci 44:2257–2262 doi:10.1023/A:1026656720868

    Article  PubMed  CAS  Google Scholar 

  26. Wang ZH, Iguchi H, Ohshio G, Imamura T, Okada N, Tanaka T et al (1996) Increased pancreatic metallothionein and glutathione levels: protecting against cerulein- and taurocholate-induced acute pancreatitis in rats. Pancreas 13:173–183 doi:10.1097/00006676-199608000-00009

    Article  PubMed  CAS  Google Scholar 

  27. Bhat ST, Vinayek R, Jensen RT, Gardner JD (1993) A newly recognized action of cholecystokinin on pancreatic acini-release of lactate dehydrogenase. Biochim Biophys Acta 1177:208–214 doi:10.1016/0167-4889(93)90042-N

    Article  PubMed  CAS  Google Scholar 

  28. Manabe T, Hirano T, Imanishi K, Ando K, Yotsumoto F, Tobe T (1992) Protective effect of nafamostat mesilate on cellular and lysosomal fragility of acinar cells in rat cerulein pancreatitis. Int J Pancreatol 12:167–172

    PubMed  CAS  Google Scholar 

  29. Rau B, Cebulla M, Uhl W, Schoenberg MH, Beger HG (1998) The clinical value of human pancreas-specific protein procarboxypeptidase B as an indicator of necrosis in acute pancreatitis: comparison to CRP and LDH. Pancreas 17:134–139 doi:10.1097/00006676-199808000-00004

    Article  PubMed  CAS  Google Scholar 

  30. Takano S, Kimura T, Kawabuchi M, Yamaguchi H, Kinjo M, Nawata H (1994) Ultrastructural study of the effects of stress on the pancreas in rats. Pancreas 9:249–257 doi:10.1097/00006676-199403000-00017

    Article  PubMed  CAS  Google Scholar 

  31. Kern HF, Adler G, Scheele GA (1985) Structural and biochemical characterization of maximal and supramaximal hormonal stimulation of rat exocrine pancreas. Scand J Gastroenterol Suppl 112:20–29

    Article  PubMed  CAS  Google Scholar 

  32. Perides G, Sharma A, Gopal A, Tao X, Dwyer K, Ligon B et al (2005) Secretin differentially sensitizes rat pancreatic acini to the effects of supramaximal stimulation with caerulein. Am J Physiol Gastrointest Liver Physiol 289:G713–G721

    PubMed  CAS  Google Scholar 

  33. Chen JW, Thomas A, Woods CM, Schloithe AC, Toouli J, Saccone GT (2000) Sphincter of Oddi dysfunction produces acute pancreatitis in the possum. Gut 47(4):539–545

    Article  PubMed  CAS  Google Scholar 

  34. Grady EF, Yoshimi SK, Maa J, Valeroso D, Vartanian RK, Rahim S, Kim EH, Gerard C, Gerard N, Bunnett NW, Kirkwood KS (2000) Substance P mediates inflammatory oedema in acute pancreatitis via activation of the neurokinin-1 receptor in rats and mice. Br J Pharmacol 130(3):505–512

    Article  PubMed  CAS  Google Scholar 

  35. Spormann H, Sokolowski A, Letko G (1989) Experimental acute pancreatitis—a quantification of dynamics at enzymic and histomorphologic levels. Pathol Res Pract 185:358–362

    PubMed  CAS  Google Scholar 

  36. Aho HJ, Koskensalo SM, Nevalainen TJ (1980) Experimental pancreatitis in the rat. Sodium taurocholate-induced acute haemorrhagic pancreatitis. Scand J Gastroenterol 15:411–416

    PubMed  CAS  Google Scholar 

  37. Aho HJ, Nevalainen TJ (1980) Experimental pancreatitis in the rat. Ultrastructure of sodium taurocholate-induced pancreatic lesions. Scand J Gastroenterol 15:417–424

    Article  PubMed  CAS  Google Scholar 

  38. Blind PJ, Marklund SL, Stenling R, Dahlgren ST (1988) Parenteral superoxide dismutase plus catalase diminishes pancreatic edema in sodium taurocholate-induced pancreatitis in the rat. Pancreas 3:563–567 doi:10.1097/00006676-198810000-00009

    Article  PubMed  CAS  Google Scholar 

  39. Wang Y, Naruse S, Kitagawa M, Ishiguro H, Nakae Y, Hayakawa T (2001) Urinary excretion of trypsinogen activation peptide (TAP) in taurocholate-induced pancreatitis in rats. Pancreas 22:24–27 doi:10.1097/00006676-200101000-00004

    Article  PubMed  Google Scholar 

  40. Arendt T, Wendt M, Olszewski M, Falkenhagen U, Stoffregen C, Folsch UR (1997) Cerulein-induced acute pancreatitis in rats—does bacterial translocation occur via a transperitoneal pathway? Pancreas 15:291–296 doi:10.1097/00006676-199710000-00012

    Article  PubMed  CAS  Google Scholar 

  41. Dobosz M, Wajda Z, Hac S, Mysliwska J, Bryl E, Mionskowska L et al (1999) Nitric oxide, heparin and procaine treatment in experimental ceruleine-induced acute pancreatitis in rats. Arch Immunol Ther Exp (Warsz) 47:155–160

    CAS  Google Scholar 

  42. Gough DB, Boyle B, Joyce WP, Delaney CP, McGeeney KF, Gorey TF et al (1990) Free radical inhibition and serial chemiluminescence in evolving experimental pancreatitis. Br J Surg 77:1256–1259 doi:10.1002/bjs.1800771119

    Article  PubMed  CAS  Google Scholar 

  43. Halangk W, Lerch MM, Brandt-Nedelev B, Roth W, Ruthenbuerger M, Reinheckel T et al (2000) Role of cathepsin B in intracellular trypsinogen activation and the onset of acute pancreatitis. J Clin Invest 106:773–781 doi:10.1172/JCI9411

    Article  PubMed  CAS  Google Scholar 

  44. Niederau C, Ude K, Niederau M, Luthen R, Strohmeyer G, Ferrell LD et al (1991) Effects of the seleno-organic substance Ebselen in two different models of acute pancreatitis. Pancreas 6:282–290 doi:10.1097/00006676-199105000-00005

    Article  PubMed  CAS  Google Scholar 

  45. Gudgeon AM, Heath DI, Hurley P, Jehanli A, Patel G, Wilson C et al (1990) Trypsinogen activation peptides assay in the early prediction of severity of acute pancreatitis. Lancet 335:4–8 doi:10.1016/0140-6736(90)90135-R

    Article  PubMed  CAS  Google Scholar 

  46. Rinderknecht H (1986) Activation of pancreatic zymogens. Normal activation, premature intrapancreatic activation, protective mechanisms against inappropriate activation. Dig Dis Sci 31:314–321 doi:10.1007/BF01318124

    Article  PubMed  CAS  Google Scholar 

  47. Steinberg W, Tenner S (1994) Acute pancreatitis. N Engl J Med 330:1198–1210 doi:10.1056/NEJM199404283301706

    Article  PubMed  CAS  Google Scholar 

  48. Tenner S, Fernandez-del Castillo C, Warshaw A, Steinberg W, Hermon-Taylor J, Valenzuela JE et al (1997) Urinary trypsinogen activation peptide (TAP) predicts severity in patients with acute pancreatitis. Int J Pancreatol 21:105–110

    PubMed  CAS  Google Scholar 

  49. Mayer J, Rau B, Schoenberg MH, Beger HG (1999) Mechanism and role of trypsinogen activation in acute pancreatitis. Hepatogastroenterology 46:2757–2763

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Mrs. C. Jechorek for her support and excellent technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Mantke.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mantke, R., Schubert, D., Röcken, C. et al. Caerulein or taurocholate induced enzymatic and histologic alterations in the isolated perfused rat pancreas. Langenbecks Arch Surg 394, 363–369 (2009). https://doi.org/10.1007/s00423-008-0401-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00423-008-0401-8

Keywords

Navigation