Skip to main content

Advertisement

Log in

The effect of N G-nitro L-arginine methyl ester on colonic anastomosis after increased intra-abdominal pressure

  • Original Article
  • Published:
Langenbeck's Archives of Surgery Aims and scope Submit manuscript

Abstract

Background

Intestinal ischemia–reperfusion (I/R) is associated with augmented nitric oxide (NO) production. Increased intra-abdominal pressure (IAP) during surgical pneumoperitoneum (P) facilitates I/R injury. We previously demonstrated decreased strength and healing of colocolic anastomoses after high IAPs. The effect of an NO synthase inhibitor, N G-nitro-arginine methyl ester (l-NAME), on anastomoses realized in colonic tissue exposed to high IAPs was investigated in this study, a randomized, controlled, and experimental study with blind outcome assessment.

Method

Fifty Wistar–albino rats were randomized to five groups; all underwent colocolic anastomosis. P was maintained for 60 min at IAPs of 14, 20, 25, and 30 mmHg in study groups 1, 2, 3, and 4, respectively; P was preceded by intraperitoneal l-NAME (2.5 mg/kg) and followed by anastomosis. The control group was not subjected to IAP or l-NAME.

Results

Anastomosis bursting pressure (ABP) values and histopathological findings were determined on the 7th–14th postoperative days. The ABPs of groups 3–4 were significantly lower than the others. Groups 1–2 had results similar to controls. Histopathological findings of the groups were consistent with their ABPs.

Conclusion

Administration of a 2.5-mg/kg intraperitoneal l-NAME dose was found to provide a beneficial role, implying a role in impaired anastomotic healing after IAPs of 14 and 20 mmHg.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Schafer M, Sagesser H, Reichen J et al (2001) Alterations in hemodynamics and hepatic and splanchnic circulation during laparoscopy in rats. Surg Endosc 15:1197–1201

    Article  PubMed  CAS  Google Scholar 

  2. Eleftheriadis E, Kotzampassi K, Papanotas K et al (1996) Gut ischemia, oxidative stress and bacterial translocation in elevated abdominal pressure in rats. World J Surg 20:11–16

    Article  PubMed  CAS  Google Scholar 

  3. Eleftheriadis E, Kotzampassi K, Botsios D et al (1996) Splanchnic ischemia during laparoscopic cholecystectomy. Surg Endosc 10:324–326

    Article  PubMed  CAS  Google Scholar 

  4. Caldwell CB, Ricotta JJ (1987) Changes in visceral blood flow with elevated intraabdominal pressure. J Surg Res 43:14–20

    Article  PubMed  CAS  Google Scholar 

  5. Diebel LN, Dulchavsky SA, Wilson RF (1992) Effect of increased intra-abdominal pressure on mesenteric arterial and intestinal mucosal blood flow. J Trauma 33:45–48

    PubMed  CAS  Google Scholar 

  6. Rasmussen IB, Bergren U, Arvidsson D et al (1995) Effects of pneumoperitoneum on splanchnic hemodynamics: an experimental study in pigs. Eur J Surg 161:819–826

    PubMed  CAS  Google Scholar 

  7. Gudmundsson FF, Gislason HG, Dicko A et al (2001) Effects of prolonged increased intra-abdominal pressure on gastrointestinal blood flow in pigs. Surg Endosc 15:854–860

    Article  PubMed  CAS  Google Scholar 

  8. Parks DA, Granger DN (1986) Contributions of ischemia and reperfusion to mucosal lesion formation. Am J Physiol Gastrointest Liver Physiol 250:G749–G753

    CAS  Google Scholar 

  9. Polat C, Arikan Y, Vatansev C et al (2002) The effects of increased intraabdominal pressure on colonic anastomoses. Surg Endosc 16:1314–1319

    Article  PubMed  CAS  Google Scholar 

  10. Andrei VE, Schein M, Wise L (1999) Small bowel ischemia following laparoscopic cholecystectomy. Dig Surg 16:522–524

    Article  PubMed  CAS  Google Scholar 

  11. Uen YH, Liang AI, Lee HH (2002) Randomized comparison of conventional carbon dioxide insufflation and abdominal wall lifting for laparoscopic cholecystectomy. J Laparoendosc Adv Surg Tech A 12:7–14

    Article  PubMed  Google Scholar 

  12. Schoeberg MH, Muhl E, Sellin D et al (1984) Posthypotension generation of superoxide free radicals—possible role in the pathogenesis of the intestinal mucosal damage. Acta Chir Scand 150:301–309

    Google Scholar 

  13. Takada K, Yamashita K, Sakurai-Yamashita Y et al (1998) Participation of nitric oxide in the mucosal injury of rat intestine induced by ischemia reperfusion. J Pharmacol Exp Ther 287:403–407

    PubMed  CAS  Google Scholar 

  14. Beckman JS, Beckman TW, Chen J et al (1990) Apparent hydroxyl radical production by peroxynitrite: implications for endothelial injury from nitric oxide and superoxide. Proc Natl Acad Sci USA 87:1620–1624

    Article  PubMed  CAS  Google Scholar 

  15. Szabo C (1996) The pathophysiological role of peroxynitrite in shock, inflammation, and ischemia–reperfusion injury. Shock 6:79–88

    Article  PubMed  CAS  Google Scholar 

  16. Moncada S, Erusalimsky JD (2002) Does nitric oxide modulate mitochondrial energy generation and apoptosis? Nat Rev Mol Cell Biol 3:214–220

    Article  PubMed  CAS  Google Scholar 

  17. Droge W (2002) Free radicals in the physiological control of cell function. Physiol Rev 82:47–49

    PubMed  CAS  Google Scholar 

  18. Gutteridge JMMC (1995) Lipid peroxidation and antioxidants as biomarkers of tissue damage. Clin Chem 41:1819–1828

    PubMed  CAS  Google Scholar 

  19. Hauet T, Mothes D, Goujon JM et al (1997) Trimetazidine prevents renal injury in the isolated perfused pig kidney exposed to prolonged cold ischemia. Transplantation 64:1082–1086

    Article  PubMed  CAS  Google Scholar 

  20. Förstermann U, Closs EI, Pollock JS et al (1994) Nitric oxide synthase isozymes. Characterization, purification, molecular cloning, and functions. Hypertension 23:1121–1131

    PubMed  Google Scholar 

  21. Pedoto A, Nandi J, Oler A et al (2001) Role of nitric oxide in acidosis-induced intestinal injury in anesthetized rats. J Lab Clin Med 138:270–276

    Article  PubMed  CAS  Google Scholar 

  22. Boughton-Smith NK, Evans SM, Laszlo F et al (1993) The induction of nitric oxide synthase and intestinal vascular permeability by endotoxin in the rat. Br J Pharmacol 110:1189–1195

    PubMed  CAS  Google Scholar 

  23. Closs EI, Enseleit F, Koesling D et al (1998) Coexpression of inducible NO synthase and soluble guanylyl cyclase in colonic enterocytes: a pathophysiologic signaling pathway for the initiation of diarrhea by gram-negative bacteria. FASEB J 12:1643–1649

    PubMed  CAS  Google Scholar 

  24. Lo CC, Chen JC, Chen HM et al (1999) Aminoguanidine attenuates hemodynamic and microcirculatory derangement in rat intestinal ischemia and reperfusion. J Trauma 47:113–118

    Google Scholar 

  25. Chen JC, Chen HM, Shyr MH et al (2000) Selective inhibition of inducible nitric oxide in ischemia–reperfusion of rat small intestine. J Formos Med Assoc 99:213–218

    PubMed  CAS  Google Scholar 

  26. Förstermann U, Boissel JP, Kleinert H (1998) Expressional control of the ‘constitutive’ isoforms of nitric oxide synthase (NOS I and NOS III). FASEB J 12:773–790

    PubMed  Google Scholar 

  27. Cuzzocrea S, Zingarelli B, Caputi AP (1998) Role of constitutive nitric oxide synthase and peroxynitrite production in a rat model of splanchnic artery occlusion shock. Life Sci 63:789–799

    Article  PubMed  CAS  Google Scholar 

  28. Qu XW, Rozenfeld RA, Huang W et al (1999) Roles of nitric oxide synthases in platelet-activating factor-induced intestinal necrosis in rats. Crit Care Med 27:356–364

    Article  PubMed  CAS  Google Scholar 

  29. Nowicki JP, Duval D, Poignet H et al (1991) Nitric oxide mediates neuronal death after focal cerebral ischemia in the mouse. Eur J Pharmacol 204:339–340

    Article  PubMed  CAS  Google Scholar 

  30. Kubes P (1993) Ischemia reperfusion in feline small intestine: a role for nitric oxide. Am J Physiol Gastrointest Liver Physiol 262:G143–G149

    Google Scholar 

  31. Luo CC, Chen HM, Chiu CH et al (2001) Effect of N G-nitro-l-arginine methyl ester on intestinal permeability following intestinal ischemia–reperfusion in a rat model. Biol Neonate 80:60–63

    Article  PubMed  CAS  Google Scholar 

  32. Kuluz JW, Prado RJ, Dietrich D et al (1993) The effect of nitric oxide synthase inhibition on infarct volume after reversible focal cerebral ischemia in conscious rats. Stroke 24:2023–2029

    PubMed  CAS  Google Scholar 

  33. Koken T, Inal M (1999) The effect of nitric oxide on ischemia–reperfusion injury in rat liver. Clin Chimica Acta 288:55–62

    Article  CAS  Google Scholar 

  34. Erbil Y, Calis A, Berber E et al (2000) The effect of intraoperative colonic lavage with N G-nitro-l-arginine methyl ester (l-NAME) on anastomotic healing in the presence of left sided colonic obstruction in the rat. Surg Today 30:421–425

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Polat.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Polat, C., Arıkan, Y., Gokce, C. et al. The effect of N G-nitro L-arginine methyl ester on colonic anastomosis after increased intra-abdominal pressure. Langenbecks Arch Surg 392, 197–202 (2007). https://doi.org/10.1007/s00423-006-0088-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00423-006-0088-7

Keywords

Navigation