Skip to main content

Advertisement

Log in

AcSDKP: a new potential marker of malignancy of the thyroid gland

  • Current Concepts in Endocrine Surgery
  • Published:
Langenbeck's Archives of Surgery Aims and scope Submit manuscript

Abstract

Background and aims

The tetrapeptide Acetyl-Ser-Asp-Lys-Pro (AcSDKP) a physiologic inhibitor of stem-cell proliferation is also known for it’s strong angiogenic activity. It has been shown that blood levels of this peptide are increased in some hematological malignancies. However, no data on the concentration of AcSDKP present in solid tumor tissue are available. The aim of our study was to measure tissue concentration of AcSDKP in benign and malignant lesions of the thyroid gland.

Patients and methods

We assessed AcSDKP level in thyroid tissue specimens using enzyme immunoassay kit. The specimens were taken intraoperatively from 20 patients (17 women and 3 men aged 21–68 years): 10 patients with benign nodular goiter and 10 patients with papillary carcinoma of the thyroid gland.

Results

The obtained results show that tissue concentration of AcSDKP in malignant thyroid tumors is five times higher when compared to benign lessions.

Conclusion

We conclude that AcSDKP may play a role in the development of the thyroid gland lesions. However, the further investigations concerning the tetrapeptide concentration in other thyroid malignancies, toxic nodular, and Grave’s goiter are required to conclude on the eventual use of AcSDKP as a marker of malignancy

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Folkman J (1971) Tumor angiogenesis: therapeutic implications. N Engl J Med 285(21):1182–1186

    Article  PubMed  CAS  Google Scholar 

  2. Kołomecki K, Bartos M, Pomorski L, Kuzdak K (2001) The influence of thyroidectomy of serum VEGF levels in patients with Graves disease. Wiad Lek 54(9–10):504–507

    PubMed  Google Scholar 

  3. Ramsden JD (2000) Angiogenesis in the thyroid gland. J Endocrinol 166(3):475–480

    Article  PubMed  CAS  Google Scholar 

  4. Stępień HM, Kołomecki K, Pasieka Z, Komorowski J, Stępień T, Kuzdak K (2002) Angiogenesis of endocrine gland tumours—new molecular targets in diagnostics and therapy. Eur J Endocrinol 146(2):143–151

    Article  PubMed  Google Scholar 

  5. Lin SY, Wang YY, Sheu WH (2003) Preoperative plasma concentrations of vascular endothelial growth factor and matrix metalloproteinase 9 are associated with stage progression in papillary thyroid cancer. Clin Endocrinol (Oxf) 58(4):513–518

    Article  CAS  Google Scholar 

  6. Lantsov D, Meirmanov S, Nakashima M, Kondo H, Saenko V, Naruke Y, Namba H, Ito M, Abrosimov A, Lushnikov E, Sekine I, Yamashita SH (2005) Cyclin D1 overexpression in thyroid papillary microcarcinoma: its association with tumour size and aberrant beta-catenin expression. Histopathology 47(3):248–256

    Article  PubMed  CAS  Google Scholar 

  7. Karger S, Berger K, Eszlinger M, Tannapfel A, Dralle H, Paschke R, Fuhrer D (2005) Evaluation of peroxisome proliferator-activated receptor-gamma expression in benign and malignant thyroid pathologies. Thyroid 15(9):997–1003

    Google Scholar 

  8. Kehlen A, Englert N, Seifert A, Klonisch T, Dralle H, Langner J, Hoang-Vu C (2004) Expression, regulation and function of autotaxin in thyroid carcinomas. Int J Cancer 109(6):833–838

    Article  PubMed  CAS  Google Scholar 

  9. Kebebew E, Peng M, Reiff E, Duh QY, Clark OH, McMillan A (2005) ECM1 and TMPRSS4 are diagnostic markers of malignant thyroid neoplasms and improve the accuracy of fine needle aspiration biopsy. Ann Surg 242(3):353–361

    PubMed  Google Scholar 

  10. Grillon C, Rieger K, Bakala J, Schott D, Morgat JL, Hannappel E, Voelter W, Lenfant M (1990) Involvement of thymosin β4 and endoproteinase Asp-N in the biosynthesis of the tetrapeptide AcSerAspLysPro a regulator of the hematopoietic system. FEBS Lett 274(1–2):30–34

    Article  PubMed  CAS  Google Scholar 

  11. Lenfant M, Wdzieczak-Bakala J, Guittet E, Prome JC, Sotty D, Frindel E (1989) Inhibitor of hematopoietic pluripotent stem cell proliferation: purification and determination of its structure. Proc Natl Acad Sci U S A 86(3):779–782

    Article  PubMed  CAS  Google Scholar 

  12. Bonnet D, Lemoine FM, Pontvert-Delucq S, Baillou C, Najman A, Guigon M (1993) Direct and reversible inhibitory effect of the tetrapeptide acetyl-N-Ser-Asp-Lys-Pro (Seraspenide) on the growth of human CD34+ subpopulations in response to growth factors. Blood 82(11):3307–3314

    PubMed  CAS  Google Scholar 

  13. Liu JM, Lawrence F, Kovacevic M, Bignon J, Papadimitriou E, Lallemand JY, Katsoris P, Potier P, Fromes Y, Wdzieczak-Bakala J (2003) The tetrapeptide AcSDKP, an inhibitor of primitive hematopoietic cell proliferation, induces angiogenesis in vitro and in vivo. Blood 101(8):3014–3020

    Article  PubMed  CAS  Google Scholar 

  14. Fromes Y, Liu JM, Kovacevic M, Bignon J, Wdzieczak-Bakala J (2005) The tetrapeptide AcSDKP improves skin flap survival and accelerates wound healing. Wound Repair Regen (submitted for publication)

  15. Yang F, Yang XP, Liu YH, Xu J, Cingolani O, Rhaleb NE, Carretero OA (2004) AcSDKP reverse inflammation and fibrosis in rats with heart failure after myocardial infarction. Hypertension 43(2):229–236

    Article  PubMed  CAS  Google Scholar 

  16. Liozon E, Pradelles P, Venot J, Rigaud M, Cransac M, Bordessoule D, Frindel E (1993) Serum levels of a negative regulator of cell proliferation (AcSDKP) are increased in certain human haemopathies. Leukemia 7(6):808–812

    PubMed  CAS  Google Scholar 

  17. Pradelles P, Frobert Y, Creminon C, Ivonine H, Frindel E (1991) Distribution ofa negative regulator of haematopoietic stem cell proliferation (AcSDKP) and thymosin β4 in mouse tissues. FEBS Lett 289(2):171–175

    Article  PubMed  CAS  Google Scholar 

  18. Conlon JM, Grimelius L, Wallin G, Thim L (1988) Isolation and structural characterization of thymosin β4 from a human medullary thyroid carcinoma. J Endocrinol 118(1):155–159

    Article  PubMed  CAS  Google Scholar 

  19. Hall AK (1991) Differential expression of thymosin genes in human tumors and in the developing human kidney. Int J Cancer 48(5):672–677

    Article  PubMed  CAS  Google Scholar 

  20. Califano D, Monaco C, Santelli G, Giuliano A, Veronese ML, Berlingieri MT, de Franciscis V, Berger N, Trapasso F, Santoro M, Viglietto G, Fusco A (1998) Thymosin β10 gene overexpression correlated with the highly malignant neoplastic phenotype of transformed thyroid cells in vivo and in vitro. Cancer Res 58(4):823–828

    PubMed  CAS  Google Scholar 

  21. Chiappetta G, Pentimalli F, Monaco M, Fedele M, Pasquinelli R, Pierantoni GM, Ribecco MT, Santelli G, Califano D, Pezzullo L, Fusco A (2004) Thymosin beta-10 gene expression as a possible tool in diagnosis of thyroid neoplasias. Oncol Rep 2(2):239–243

    Google Scholar 

  22. Cha HJ, Jeong MJ, Kleinman HK (2003) Role of thymosin β4 in tumor metastasis and angiogenesis. J Natl Cancer Inst 95(22):1674–1680

    PubMed  CAS  Google Scholar 

  23. Chen C, Li M, Yang H, Chai H, Fisher W, Yao Q (2005) Roles of thymosins in cancers and other organ systems. World J Surg 29(3):264–270

    Article  PubMed  Google Scholar 

  24. Lee SH, Son MJ, Oh SH, Rho SB, Park K, Kim YJ, Park MS, Lee JH (2005) Thymosin β10 inhibits angiogenesis and tumor growth by interfering with Ras function. Cancer Res 65(1):137–148

    PubMed  CAS  Google Scholar 

Download references

Acknowledgement

The investigation was supported by MolMed, Centre of Excellence of Medical University of Lodz, Poland.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michal Kusinski.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kusinski, M., Wdzieczak-Bakala, J., Liu, JM. et al. AcSDKP: a new potential marker of malignancy of the thyroid gland. Langenbecks Arch Surg 391, 9–12 (2006). https://doi.org/10.1007/s00423-005-0014-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00423-005-0014-4

Keywords

Navigation