Skip to main content

Advertisement

Log in

Tolerance-inducing strategies in transplantation surgery—current status and perspectives

  • New Surgical Horizons
  • Published:
Langenbeck's Archives of Surgery Aims and scope Submit manuscript

Abstract

Background

Life-long immunosuppressive medication has to be administered to the majority of solid-organ recipients after transplantation of genetically mismatched organs in order to circumvent acute graft loss due to alloreactive rejection responses triggered by the host's immune system. However, life-long suppression of the immune system implicitly limits the host's ability to respond appropriately to infectious, fungal and carcinogenic threats. Simultaneously non-targeted inhibition of immunological defense mechanisms coincides with substantial morbidity and mortality for the host. Thus, for the past five decades research in the field of transplantation medicine has focused on innovative strategies to induce graft tolerance to donor alloantigens, a state in which the recipient's lymphocytes have learned to accept the foreign organ or tissue as "self" or "non-dangerous" without the need of chronic immunosuppression. Achieving that specific goal of donor-specific tolerance would not only minimize the risk of the recipient to suffer from serious side effects resulting from continuous immunosuppressive therapy, but would also prevent loss of long-term graft function caused by chronic rejection processes. Recently, numerous insights into the dynamic interrelationships of host immune responses elicited by donor antigen-presentation, either on the graft itself or on specialized antigen-presenting cells, have substantially broadened our understanding of the cascade of events that result in the acquisition of tolerance.

Method

We highlight areas of research that are currently particularly helpful not only to set up new strategies to induce donor-specific tolerance or long-term graft acceptance, but also to identify and describe parameters which serve to characterize those patients who have acquired a state of tolerance and are safe to be weaned off from their immunosuppressive regimen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Daemen MA, de Vries B, Buurman WA (2002) Apoptosis and inflammation in renal reperfusion injury. Transplantation 73:1693–1700

    Google Scholar 

  2. Daemen MA, van't Veer C, Denecker G, Heemskerk VH, Wolfs TG, Claus M, Vandenabeele P, Buuman WA (1999) Inhibition of apoptosis induced by ischemia reperfusion prevents inflammation. J Clin Invest 104:541–549

    CAS  PubMed  Google Scholar 

  3. El Sawy T, Fahmy N, Fairchild R (2002) Chemokines: directing leukocyte infiltration into allografts. Curr Opin Immunol 14:562

    Article  PubMed  Google Scholar 

  4. Miura M, Fu X, Zhang QW, Remick DG, Fairchild RL (2001) Neutralization of Gro-alpha and macrophage inflammatory protein-2 attenuates renal ischemia/reperfusion injury. Am J Pathol 159:2137–2145

    CAS  PubMed  Google Scholar 

  5. Nishimura M, Umehara H, Nakayama T, Yoneda O, Hioshima K, Kakizaki M, Dohmae N (2002) Dual functions of fractalkine/CX3C ligand 1 in trafficking of perforin+/granzyme B+ cytotoxic effector lymphocytes that are defined by CX3CR1 expression. J Immunol 168:6173–6180

    CAS  PubMed  Google Scholar 

  6. Haskell CA, Hancock WW, Salant DJ, Gao W, Csimadra V, Peters W, Faia K, Futuri o, Rettman IB, Charo IF (2001) Targeted deletion of CX(3)CR1 reveals a role for fractalkine in cardiac allograft rejection. J Clin Invest 108:679–688

    Article  CAS  PubMed  Google Scholar 

  7. Robinson LA, Nataraj C, Thomas DW, Howell DN, Grilliths R, Bautch V, Pateck, DD, Feng L, Collmann TM (2000) A role for fractalkine and its receptor (CX3CR1) in cardiac allograft rejection. J Immunol 165:6067–6072

    CAS  PubMed  Google Scholar 

  8. Maier S, Tertilt C, Chambron N, Gerauer K, Huser N, Heidecke CD, Pfeffer K (2001) Inhibition of natural killer cells results in acceptance of cardiac allografts in CD28-/- mice. Nat Med 7:557–562

    Article  CAS  PubMed  Google Scholar 

  9. Hancock WW, Gao W, Csizmadia V (2001) Donor-derived IP-10 initiates development of acute allograft rejection. J Exp Med 193:975–980

    Article  CAS  PubMed  Google Scholar 

  10. George JF, Goldstein DR, Thomas JM (1999) Donor bone marrow and transplantation tolerance: historical perspectives, molecular mechanisms and future directions (review). Int J Mol Med 4:475–482

    CAS  PubMed  Google Scholar 

  11. Ildstad ST, Sachs DH (1984) Reconstitution with syngeneic plus allogeneic or xenogeneic bone marrow leads to specific acceptance of allografts or xenografts. Nature 307:168–170

    CAS  PubMed  Google Scholar 

  12. Reisner Y, Martelli MF (2000) Transplantation tolerance induced by "megadose" transplants of CD34+ stem cells: a new option for leukaemia patients without an HLA-matched donor. Curr Opin Immunol 12:536–541

    CAS  PubMed  Google Scholar 

  13. Li XC, Strom TB, Turka LA, Wells AD (2001) T cell death and transplantation tolerance. Immunity 4:407–416

    Article  Google Scholar 

  14. Li Y, Li XC, Zheng XX, Wells AD, Turka LA, Strom TB (1999) Blocking both signal 1 and signal 2 of T-cell activation prevents apoptosis of alloreactive T cells and induction of peripheral allograft tolerance. Nat Med 5:1298–1302

    Article  CAS  PubMed  Google Scholar 

  15. Wells AD, Li XC, Li Y, Walsh MC, Zhneg XX, Wu Z, Nunez G, Tang A, Sayegh M, Hancock WW, Strom TB, Turka LA (1999) Requirement for T-cell apoptosis in the induction of peripheral transplantation tolerance. Nat Med 5:1303–1307

    Article  CAS  PubMed  Google Scholar 

  16. Gershon RK, Kondo K (1970) Cell interactions in the induction of tolerance: the role of thymic lymphocytes. Immunology 18:723–737

    CAS  PubMed  Google Scholar 

  17. Gershon RK, Kondo K (1971) Infectious immunological tolerance. Immunology 21:903–914

    CAS  PubMed  Google Scholar 

  18. Hall BM (1985) Mechanisms maintaining enhancement of allografts. I. Demonstration of a specific suppressor cell. J Exp Med 161:123–133

    CAS  PubMed  Google Scholar 

  19. Kronenberg M, Steinmetz M, Kobori J, Kraig E, Kapp JA, Pierce CW, Sorensen CM, Suzuki G, Tada T, Hood L (1983) RNA transcripts for I-J polypeptides are apparently not encoded between the I-A and I-E subregions of the murine major histocompatibility complex. Proc Natl Acad Sci U S A 80:5704–5708

    Google Scholar 

  20. Sakaguchi S, Sakaguchi N, Asano M, Itoh M, Toda M (1995) Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25): breakdown of a simple mechanism of self-tolerance causes various autoimmune diseases. J Immunol 155:1151–1164

    CAS  PubMed  Google Scholar 

  21. Sakaguchi S, Toda M, Asano M, Itoh M, Morse SS, Sakaguchi N (1996) T cell mediated maintenance of natural self-tolerance: its breakdown of a possible cause of various immune diseases. J Autoimmun 9:211–220

    Article  CAS  Google Scholar 

  22. Ng WF, Duggan PJ, Ponchel F, Matarese G, Lombardi G, Edward AD, Isaacs ID, Lechetr RI (2001) Human CD4(+)CD25(+) cells: a naturally occurring population of regulatory T cells. Blood 98:2736–2744

    Article  CAS  PubMed  Google Scholar 

  23. Baecher-Allan C, Brown JA, Freeman GJ, Haefler DA (2001) CD4+CD25 high regulatory cells in human peripheral blood. J Immunol 167:1245–1253

    CAS  PubMed  Google Scholar 

  24. Thornton AM, Shevach EM (2000) Suppressor effector function of CD4+CD25+ immunoregulatory T cells is antigen non-specific. J Immunol 164:183–190

    CAS  PubMed  Google Scholar 

  25. Dieckmann D, Bruett CH, Ploettner H, Lutz MB, Schuler G (2002) Human CD4(+)CD25(+) regulatory, contact-dependent T cells induce interleukin 1-producing, contact-independent type 1-like regulatory T cells. J Exp Med 196:247–253

    Article  CAS  PubMed  Google Scholar 

  26. Jonuleit H, Schmitt E, Kakirman H, Stassen M, Knop I, Enh AH (2002) Infectious tolerance: human CD25(+) regulatory T cells convey suppressor activity to conventional CD4(+) T helper cells. J Exp Med 196:255–260

    Article  CAS  PubMed  Google Scholar 

  27. Jordan MS, Boesteanu A, Reed AJ, Petrone AL, Holenbeck AE, Lerman MA, Naii A, Caton AJ (2001) Thymic selection of CD4+CD25+ regulatory T cells induced by an agonist self-peptide. Nat Immunol 2:301–306

    Article  CAS  PubMed  Google Scholar 

  28. Seino KL, Fukao K, Muramoto K, Yanagisawa K, Takada Y, Kakuta S, Iwakura Y, Van Keer L, Takeda K, Nakayaman T (2001) Requirement for natural killer T (NKT) cells in the induction of allograft tolerance. Proc Natl Acad Sci U S A 98:2577–2581

    Google Scholar 

  29. Sonoda KH, Faunce DE, Taniguchi M, Exley M, Balk S, Stein-Streilein J (2001) NK T cell-derived IL-10 is essential for the differentiation of antigen-specific T regulatory cells in systemic tolerance. J Immunol 166:42–50

    CAS  PubMed  Google Scholar 

  30. Garin MI, Lechler RI (2003) Regulatory T cells. Curr Opin Organ Transplant 8:7–12

    Article  Google Scholar 

  31. Bushell A, Morris PJ, Wood KJ (1995) Transplantation tolerance induced by antigen pre-treatment and depleting anti-CD4 antibody depends on CD4+ T cell regulation during the induction phase of the response. Eur J Immunol 25:2643–2649

    CAS  PubMed  Google Scholar 

  32. Cobbold SP, Martin G, Waldmann H (1990) The induction of skin graft tolerance in major histocompatibility complex-mismatched or primed recipients: primed T cells can be tolerized in the periphery with anti-CD4 and anti-CD8 antibodies. Eur J Immunol 20:2747–2755

    CAS  PubMed  Google Scholar 

  33. Qin SX, Wise M, Cobbold SP, Leong L, Kong YC, Parnes IR, Waldmann H (1990) Induction of tolerance in peripheral T cells with monoclonal antibodies. Eur J Immunol 20:2745

    Google Scholar 

  34. Yamada A, Chandraker A, Laufer TM, Geth AJ, Sayegh MH, Auchinclass H Jr (2001) Recipient MHC class II expression is required to achieve long-term survival of murine cardiac allografts after costimulatory blockade. J Immunol 167:5522–5526

    CAS  PubMed  Google Scholar 

  35. Bushell A, Karim M, Kingsley C, Wood KJ (2003) Random blood transfusion in the absence of any additional therapy induces CD25+ CD4+ regulatory T cells: a probable explantation of the blood transfusion effect. Abstract no. 35, 85, British Transplantation Society, ISBN 0–9542221-1-3

  36. Calne RY, Watson CJE, Brons IGM, Makisalo H, Metcalfe SM, Sriwatanawongsa V, Davies HS (1994) Tolerance of porcine renal allografts induced by donor spleen cells and seven days treatment with cyclosporine. Transplantation 57:1433–1435

    CAS  PubMed  Google Scholar 

  37. Calne RY (1996) WOFIE hypothesis. Some thoughts on an approach toward allograft tolerance. Transplant Proc 28:1152

    CAS  PubMed  Google Scholar 

  38. Dresske B, Zavazava N, Huang DS, Lin X, Kremer B, Fändrich F (1998) WOFIE augments the immunosuppressive potency of FK-506. Transpl Immunol 6:243–249

    Article  CAS  PubMed  Google Scholar 

  39. Dresske B, Zavazava N, Jenisch S, Exner B, Lenz P, El Mohktari NE, Kremer B, Faendrich F (2003) WOFIE synergizes with calcineurin-inhibitor treatment and early steroid withdrawal in kidney transplantation. Transplantation 75:1286–1291

    CAS  PubMed  Google Scholar 

  40. Fandrich F, Zhou X, Schlemminger M, Lin X, Dresske B (2002) Future strategies for tolerance induction: a comparative study between hematopoietic stem cells and macrophages. Hum Immunol 63:805–812

    Article  PubMed  Google Scholar 

  41. Fändrich F, Lin X, Chai GX, Schulze M, Ganten D, Bader M, Holle J, Huang D-S, Parwaresch R, Zavazava N, Binas B (2002) Preimplantation-stage stem cells induce long-term allogeneic graft acceptance without supplementary host conditioning. Nat Med 8:171–178

    PubMed  Google Scholar 

  42. Bianchi DW (1998) Current knowledge about fetal blood cells in the maternal circulation. J Perinat Med 26:175–185

    CAS  PubMed  Google Scholar 

  43. Denton MD, Magee CC, Sayegh MH (1999) Immunosuppressive strategies in transplantation. Lancet 353 (9158):1083–1091

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fred Fändrich.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fändrich, F., Ruhnke, M., Dresske, B. et al. Tolerance-inducing strategies in transplantation surgery—current status and perspectives. Langenbecks Arch Surg 389, 60–66 (2004). https://doi.org/10.1007/s00423-003-0415-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00423-003-0415-1

Keywords

Navigation