Skip to main content
Log in

Low-dimensional models of single neurons: a review

  • Review Article
  • Published:
Biological Cybernetics Aims and scope Submit manuscript

Abstract

The classical Hodgkin–Huxley (HH) point-neuron model of action potential generation is four-dimensional. It consists of four ordinary differential equations describing the dynamics of the membrane potential and three gating variables associated to a transient sodium and a delayed-rectifier potassium ionic currents. Conductance-based models of HH type are higher-dimensional extensions of the classical HH model. They include a number of supplementary state variables associated with other ionic current types, and are able to describe additional phenomena such as subthreshold oscillations, mixed-mode oscillations (subthreshold oscillations interspersed with spikes), clustering and bursting. In this manuscript we discuss biophysically plausible and phenomenological reduced models that preserve the biophysical and/or dynamic description of models of HH type and the ability to produce complex phenomena, but the number of effective dimensions (state variables) is lower. We describe several representative models. We also describe systematic and heuristic methods of deriving reduced models from models of HH type.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abbott LF (1999) Lapicque’s introduction of the integrate-and-fire model neuron (1907). Brain Res Bull 50:303–304

    Article  CAS  PubMed  Google Scholar 

  • Acker CD, Kopell N, White JA (2003) Synchronization of strongly coupled excitatory neurons: Relating network behavior to biophysics. J Comput Neurosci 15:71–90

    Article  PubMed  Google Scholar 

  • Akman O, Schaefer E (2015) An evolutionary computing approach for parameter estimation investigation of a model for cholera. J Biol Dyn 9:147–158

    Article  PubMed  Google Scholar 

  • Baer SM, Erneux T, Rinzel J (1989) The slow passage through a Hopf bifurcation: delay, memory effects, and resonance. SIAM J Appl Math 49:55–71

    Article  Google Scholar 

  • Barranca VJ, Johnson DC, Moyher JL, Sauppe JP, Shkarayev MS, Kovacic G, Cai D (2013) Dynamics of the exponential integrate-and-fire model with slow currents and adaptation. J Comput Neurosci 37:161–180

    Article  Google Scholar 

  • Bertram R, Butte MJ, Kiemel T, Sherman A (1995) Topological and phenomenological classification of bursting oscillations. Bull Math Biol 57:413–439

    Article  CAS  PubMed  Google Scholar 

  • Bonhoeffer K (1948) Activation of passive iron as a model for the excitation of nerve. J Gen Physiol 32:69–91

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Borgers C (2017) An introduction to modeling neuronal dynamics. Springer

    Book  Google Scholar 

  • Brette R, Gerstner W (2005) Adaptive exponential integrate-and-fire model as an effective description of neuronal activity. J Neurophysiol 94:3637–3642

    Article  PubMed  Google Scholar 

  • Brøns M, Kaper TJ, Rotstein HG (2008) Introduction to focus issue: mixed mode oscillations: experiment, computation, and analysis. Chaos 18:015101

    Article  PubMed  Google Scholar 

  • Brunel N, van Rossum MCW (2007) Lapicque’s 1907 paper: from frogs to integrate-and-fire. Biol Cybern 97:337–339

    Article  PubMed  Google Scholar 

  • Brunton SL, Proctor JL, Kutz JN (2016) Discovering governing equations from data by sparse identification of nonlinear dynamical systems. Proc Natl Acad Sci USA 113:3932–3937

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burkitt AN (2006) A review of the integrate-and-fire neuron model: I. homogeneous synaptic input. Biol Cybern 95:1–19

    Article  CAS  PubMed  Google Scholar 

  • Butera RJ, Rinzel J, Smith JC (1999) Models of respiratory rhythm generation in the pre-Botzinger complex. I. bursting pacemaker neurons. J Neurophysiol 82:382–397

    PubMed  Google Scholar 

  • Chamption K, Lusch B, Kutz NJ, Brunton SL (2019) Data-driven discovery of coordinates and governing equations. Proc Natl Acad Sci USA 116:22445–22451

    Article  Google Scholar 

  • Coombes S, Bressloff PC (1999) Mode locking and arnold tongues in integrate-and-fire neural oscillators. Phys Rev E 60:2086–2096

    Article  CAS  Google Scholar 

  • Dayan P, Abbott LF (2001) Theoretical neuroscience. The MIT Press, Cambridge

    Google Scholar 

  • Deb K (2001) Multi-objective optimization using evolutionary algorithms. Wiley, Hoboken

    Google Scholar 

  • Deb K, Beyer H-G (2001) Self-adaptive genetic algorithms with simulated binary crossover. Evol Comput 9:197–221

    Article  CAS  PubMed  Google Scholar 

  • Deb K, Anand A, Joshe D (2002) A computationally efficient evolutionary algorithm for real-parameter optimization. Evol Comput 10:371–395

    Article  PubMed  Google Scholar 

  • Deb K, Pratap A, Agarwal S, Meyarivan T (2002) A fast and elitist multiobjective genetic algorithm: Nsga-ii. IEEE Trans Evolut Comput 6:182–197

    Article  Google Scholar 

  • Edelman GM, Gally JA (2001) Degeneracy and complexity in biological systems. Proc Natl Acad Sci USA 98:13763–13768

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ermentrout GB (1996) Type I membranes, phase resetting curves, and synchrony. Neural Comput 8:979–1001

    Article  CAS  PubMed  Google Scholar 

  • Ermentrout GB, Kopell N (1986) Parabolic bursting in an excitable system coupled with a slow oscillation. SIAM J Appl Math 46:233–253

    Article  Google Scholar 

  • Ermentrout BG, Kopell N (1998) Fine structure of neural spiking and synchronization in the presence of conduction delays. Proc Natl Acad Sci USA 95:1259–1264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ermentrout GB, Terman D (2010) Mathematical foundations of neuroscience. Springer

    Book  Google Scholar 

  • Evensen G (2009) Data assimilation: the ensemble Kalman filter. Springer

    Book  Google Scholar 

  • FitzHugh R (1960) Thresholds and plateaus in the Hodgkin-Huxley nerve equations. J Gen Physiol 43:867–896

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • FitzHugh R (1961) Impulses and physiological states in models of nerve membrane. Biophysical J 1:445–466

    Article  CAS  Google Scholar 

  • Fourcaud-Trocme N, Hansel D, van Vreeswijk C, Brunel N (2003) How spike generation mechanisms determine the neuronal response to fluctuating input. J Neurosci 23:11628–11640

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fransén E, Alonso AA, Dickson CT, Magistretti ME, Hasselmo J (2004) Ionic mechanisms in the generation of subthreshold oscillations and action potential clustering in entorhinal layer II stellate neurons. Hippocampus 14:368–384

    Article  PubMed  Google Scholar 

  • Fuortes MGF, Mantegazzini F (1962) Interpretation of the repetitive firing of nerve cells. J Gen Physiol 45:1163–1179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gabbiani F, Cox SJ (2017) Mathematics for neuroscientists, 2nd edn. Academic Press

    Google Scholar 

  • Gerstner W, Kistler WM (2002) Spiking neuron models. Cambridge University Press

    Book  Google Scholar 

  • Gerstner W, Kistler WM, Naud R, Paninski L (2014) Neuronal dynamics: from single neurons to networks and models of cognition. Cambridge University Press

    Book  Google Scholar 

  • Goaillard JM, Marder E (2021) Ion channel degeneracy, variability, and covariation in neuron and circuit resilience. Annu Rev Neurosci 44:335–357

    Article  CAS  PubMed  Google Scholar 

  • Golomb D (2014) Mechanism and function of mixed-mode oscillations in vibrissa motoneurons. PLoS ONE 9:e109205

    Article  PubMed  PubMed Central  Google Scholar 

  • Golomb D, Yue C, Yaari Y (2006) Contribution of persistent Na\(^+\) current and M-Type K\(^+\) current to somatic bursting in ca1 pyramidal cells: combined experimental and modeling study. J Neurophysiol 96:1912–1926

    Article  CAS  PubMed  Google Scholar 

  • Goncalves PJ, Lueckmann J-M, Deistler M, Nonnenmacher M, Ocal K, Bassetto G, Chintaluri C, Podlaski WF, Haddad SA, Vogels TP, Greenberg DS, Macke JH (2020) Training deep neural density estimators to identify mechanistic models of neural dynamics. Elife 9:e56261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hansel D, Mato G (2001) Existence and stability of persistent states in large neuronal networks. Phys Rev Lett 86:4175–4178

    Article  CAS  PubMed  Google Scholar 

  • Hansel D, Mato G, Meunier C (1995) Synchrony in excitatory neural networks. Neural Comput 7:307–337

    Article  CAS  PubMed  Google Scholar 

  • Hill AV (1936) Excitation and accommodation in nerve. Proc R Soc B 119:305–255

    Google Scholar 

  • Hindmarsh JL, Rose RM (1994) A model for rebound bursting in mammalian neurons. Philos Trans R Soc Lond B 346:129–150

    Article  CAS  Google Scholar 

  • Hodgkin AL, Huxley AF (1952) A quantitative description of membrane current and its application to conductance and excitation in nerve. J Physiol 117:500–544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hodgkin AL, Huxley AF (1952) Currents carried by sodium and potassium ions through the membrane of the giant axon of loligo. J Physiol 116:449–472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hutcheon B, Yarom Y (2000) Resonance, oscillations and the intrinsic frequency preferences in neurons. Trends Neurosci 23:216–222

    Article  CAS  PubMed  Google Scholar 

  • Izhikevich EM (2001) Resonate-and-fire neurons. Neural Netw 14:883–894

    Article  CAS  PubMed  Google Scholar 

  • Izhikevich EM (2003) Simple model of spiking neurons. IEEE Trans Neural Netw 14:1569–1572

    Article  CAS  PubMed  Google Scholar 

  • Izhikevich E (2006) Dynamical Systems in Neuroscience: the geometry of excitability and bursting. MIT Press, Cambridge

    Book  Google Scholar 

  • Izhikevich EM (2010) Hybrid spiking models. Philos Trans R Soc A 368:5061–5070

    Article  Google Scholar 

  • Jalics J, Krupa M, Rotstein HG (2010) A novel mechanism for mixed-mode oscillations in a neuronal model. Dyn Syst Int J 25:445–482

    Article  Google Scholar 

  • Johnston D, Wu SM-S (1995) Foundations of cellular neurophysiology. The MIT Press, Cambridge

    Google Scholar 

  • Jolivet R, Lewis TJ, Gerstner W (2004) Generalized integrate-and-fire models of neuronal activity approximate spike trains of a detailed model to a high degree of accuracy. J Neurophysiol 92:959–976

    Article  PubMed  Google Scholar 

  • Kass RE, Amari S-I, Arai K, Brown EN, Diekman CO, Diesmann M, Doiron B, Eden UT, Fairhall A, Fiddyment GM, Fukai T, Grün S, Harrison M, Helias M, Kramer MA, Nakahara H, Teramae J-N, Thomas PJ, Reimers M, Rodu J, Rotstein HG, Shea-Brown E, Shimazaki H, Shinomoto S, Yu BM (2018) Computational neuroscience: mathematical and statistical perspectives. Annu Rev Stat 5:183–214

    Article  Google Scholar 

  • Kepler TB, Marder E, Abbott LF (1990) The effect of electrical coupling on the frequency of model neuronal oscillators. Science 248:83–85

    Article  CAS  PubMed  Google Scholar 

  • Kistler WM, Gerstner W, van Hemmen JL (1997) Reduction of the Hodgkin-Huxley equations to a single-variable threshold model. Neural Comput 9:1015–1045

    Article  Google Scholar 

  • Knight BW (1972) Dynamics of encoding in a population of neurons. J Gen Physiol 59:734–766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koch C (1999) Biophysics of computation. Oxford University Press

    Google Scholar 

  • Krupa M, Szmolyan P (2001) Relaxation oscillation and canard explosion. J Differ Equ 174:312–368

    Article  Google Scholar 

  • Lapicque L (1907) Recherches quantitatives sur l’excitation électrique des nerfes traitée comme une polarization. J Physiol Pathol Gen 9:620–637

    Google Scholar 

  • Latham PE, Richmond BJ, Nelson PG, Nirenberg S (2000) Intrinsic dynamics in neuronal networks. I. Theory. J Neurophysiol 83:808–827

    Article  CAS  PubMed  Google Scholar 

  • Lecar H (2007) Morris-lecar model. Scholarpedia 2:1333

    Article  Google Scholar 

  • Lederman D, Patel R, Itani O, Rotstein HG (2022) Parameter estimation in the age of degeneracy and unidentifiability. Mathematics 10:170

    Article  Google Scholar 

  • Levenstein D, Alvarez VA, Amarasingham A, Azab H, Gerkin RC, Hasenstaub A, Iyer R, Jolivet R, Marzen S, Monaco JD, Prinz A, Quarishi S, Santamaría F, Shivkumar S, Singh MF, Stockton DB, Traub R, Rotstein HG, Nadim F, Redish D (2020) On the role of theory and modeling in neuroscience. arXiv preprint arXiv:2003.13825

  • Lillacci G, Khammash M (2010) Parameter estimation and model selection in computational biology. PLoS Comput Biol 6:e1000696

    Article  PubMed  PubMed Central  Google Scholar 

  • Manor Y, Rinzel J, Segev I, Yarom Y (1997) Low-amplitude oscillations in the inferior olive: A model based on electrical coupling of neurons with heterogeneous channel densities. J Neurophysiol 77:2736–2752

    Article  CAS  PubMed  Google Scholar 

  • Marder E (2011) Variability, compensation, and modulation in neurons and circuits. Proc Natl Acad Sci USA 108:15542–15548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McCormick DA, Shu Y, Yu Y (2007) Hodgkin and Huxley model - still standing? Nature 445:E1–E2

    Article  CAS  PubMed  Google Scholar 

  • Meng XY, Huguet G, Rinzel J (2012) Type III excitability, slope sensitivity and coincidence detection. Discrete Continuous Dyn Syst A 32:2729–2757

    Article  Google Scholar 

  • Mensi S, Naud R, Pozzorini C, Avermann M, Petersen CC, Gerstner J (2012) Parameter extraction and classification of three cortical neuron types reveals two distinct adaptation mechanisms. J Neurophysiol 107:1756–1775

    Article  PubMed  Google Scholar 

  • Miller P (2018) An introductory course in computational neuroscience. MIT Press, Cambridge

    Google Scholar 

  • Morris H, Lecar C (1981) Voltage oscillations in the barnacle giant muscle fiber. Biophysical J 35:193–213

    Article  CAS  Google Scholar 

  • Moye MJ, Diekman C (2018) Data assimilation methods for neuronal state and parameter estimation. J Math Neurosci 8:11

    Article  PubMed  PubMed Central  Google Scholar 

  • Nagumo JS, Arimoto S, Yoshizawa S (1962) An active pulse transmission line simulating nerve axon. Proc IRE 50:2061–2070

    Article  Google Scholar 

  • Naundorf B, Wolf F, Volgushev M (2006) Unique features of action potential initiation in cortical neurons. Nature 440:1060–1063

    Article  CAS  PubMed  Google Scholar 

  • Papamarkou T, Hinkle J, Young JT, Womble D (2019) Challenges in Bayesian inference via markov chain monte carlo for neural networks. arXiv

  • Pena RFO, Rotstein HG (2022) Oscillations and variability in neuronal systems: interplay of autonomous transient dynamics and fast deterministic fluctuations. J Comput Neurosci

  • Perkel DH, Mulloney B, Budelli RW (1981) Quantitative methods for predicting neuronal behavior. Neuroscience 6:823–837

    Article  CAS  PubMed  Google Scholar 

  • Pozzorini C, Mensi S, Hagens O, Naud R, Koch C, Gerstner W (2015) Automated high-throughput characterization of single neurons by means of simplified spiking models. PLoS Comput Biol 11:e1004275

    Article  PubMed  PubMed Central  Google Scholar 

  • Prescott SA, De Koninck Y, Sejnowski TJ (2008) Biophysical basis for three distinct dynamical mechanisms of action potential initiation. PLoS Comp. Biol. 4:e100198

    Article  Google Scholar 

  • Prescott SA, Ratté S, De Koninck Y, Sejnowski TJ (2008) Pyramidal neurons switch from integrator in vitro to resonators under in vivo-like conditions. J Neurophysiol 100:3030–3042

    Article  PubMed  PubMed Central  Google Scholar 

  • Prinz AA, Bucher D, Marder E (2004) Similar network activity from disparate circuit parameters. Nature Neurosci. 7:1345–1352

    Article  CAS  PubMed  Google Scholar 

  • Prinz AA, Abbott LF, Marder E (2004) The dynamic clamp comes of age. Trends Neurosci 27:218–224

    Article  CAS  PubMed  Google Scholar 

  • Richardson MJE, Brunel N, Hakim V (2003) From subthreshold to firing-rate resonance. J Neurophysiol 89:2538–2554

    Article  PubMed  Google Scholar 

  • Rinzel J (1986) A formal classification of bursting mechanisms in excitable systems. In: Proceedeings of the international congress of mathematicians, pp 1578–1593

  • Rinzel J (1985) Bursting oscillations in an excitable membrane model. In: Sleeman BD, Jarvis RJ (eds) Ordinary and partial differential equations lecture notes in mathematics, vol 1151. Springer, Berlin, pp 304–316

    Chapter  Google Scholar 

  • Rinzel J (1985) Excitation dynamics: Insights from simplified membrane models. Fed Proc 44:2944–2946

    CAS  PubMed  Google Scholar 

  • Rinzel J, Ermentrout GB (1998) Analysis of neural excitability and oscillations. In: Koch C, Segev I (eds) Methods in neural modeling, 2nd edn. MIT Press, Cambridge, pp 251–292

    Google Scholar 

  • Rossi RJ (2018) Mathematical statistics: an introduction to likelihood based inference. Wiley, New York

    Book  Google Scholar 

  • Rotstein HG, Nadim F (2020) Neurons and neural networks: computational models. In: Encyclopedia of life sciences. Wiley, Chichester

  • Rotstein HG (2013) Abrupt and gradual transitions between low and hyperexcited firing frequencies in neuronal models with fast synaptic excitation: A comparative study. Chaos 23:046104

    Article  PubMed  Google Scholar 

  • Rotstein HG (2014) Frequency preference response to oscillatory inputs in two-dimensional neural models: a geometric approach to subthreshold amplitude and phase resonance. J Math Neurosci 4:11

    Article  PubMed  PubMed Central  Google Scholar 

  • Rotstein HG (2015) Subthreshold amplitude and phase resonance in models of quadratic type: nonlinear effects generated by the interplay of resonant and amplifying currents. J Comput Neurosci 38:325–354

    Article  PubMed  Google Scholar 

  • Rotstein HG (2017) Spiking resonances in models with the same slow resonant and fast amplifying currents but different subthreshold dynamic properties. J Comput Neurosci 43:243–271

    Article  PubMed  Google Scholar 

  • Rotstein HG (2017) Resonance modulation, annihilation and generation of antiresonance and antiphasonance in 3d neuronal systems: interplay of resonant and amplifying currents with slow dynamics. J Comput Neurosci 43:35–63

    Article  PubMed  Google Scholar 

  • Rotstein HG (2017) The shaping of intrinsic membrane potential oscillations: positive/negative feedback, ionic resonance/amplification, nonlinearities and time scales. J Comput Neurosci 42:133–166

    Article  PubMed  Google Scholar 

  • Rotstein HG (2018) Subthreshold resonance and phasonance in single cells: 2D models. In: Jaeger D, Jung R (eds) Encyclopedia of computational neuroscience: Springer Reference (www.springerreference.com). Springer, New York

  • Rotstein HG, Nadim F (2014) Frequency preference in two-dimensional neural models: a linear analysis of the interaction between resonant and amplifying currents. J Comput Neurosci 37:9–28

    Article  PubMed  Google Scholar 

  • Rotstein HG, Oppermann T, White JA, Kopell N (2006) The dynamic structure underlying subthreshold oscillatory activity and the onset of spikes in a model of medial entorhinal cortex stellate cells. J Comput Neurosci 21:271–292

    Article  PubMed  Google Scholar 

  • Rotstein HG, Wechselberger M, Kopell N (2008) Canard induced mixed-mode oscillations in a medial entorhinal cortex layer II stellate cell model. SIAM J Appl Dyn Syst 7:1582–1611

    Article  Google Scholar 

  • Rotstein HG, Coombes S, Gheorghe AM (2012) Canard-like explosion of limit cycles in two-dimensional piecewise-linear models of FitzHugh-Nagumo type. SIAM J Appl Dyn Syst 11:135–180

    Article  Google Scholar 

  • Senov A, Granichin O (2017) Projective approximation based gradient descent modification. IFAC-PapersOnLine 50:3899–3904

    Article  Google Scholar 

  • Shahriari B, Swersky K, Wang Z, Adams RP, de Freitas N (2016) Taking the human out of the loop: a review of Bayesian optimization. Proc IEEE 104:148–175

    Article  Google Scholar 

  • Sharp AA, O’Neil MB, Abbott LF, Marder E (1993) The dynamic clamp: artificial conductances in biological neurons. Trends Neurosci 16:389–394

    Article  CAS  PubMed  Google Scholar 

  • Sharp AA, O’Neil MB, Abbott LF, Marder E (1993) Dynamic clamp: computer-generated conductances in real neurons. J Neurophysiol 69:992–995

    Article  CAS  PubMed  Google Scholar 

  • Smith GD, Cox CL, Sherman SM, Rinzel J (2000) Fourier analysis of sinusoidally driven thalamocortical relay neurons and a minimal integrate-and-fire-or-burst model. J Neurophysiol 83:588–610

    Article  CAS  PubMed  Google Scholar 

  • Stein RB (1965) A theoretical analysis of neuronal variability. Biophysical J 5:173–194

    Article  CAS  Google Scholar 

  • Stein RB (1967) Some models of neuronal variability. Biophysical J 7:37–68

    Article  CAS  Google Scholar 

  • Strogatz SH (1994) Nonlinear dynamics and Chaos. Addison Wesley, Reading MA

    Google Scholar 

  • Szmolyan P, Wechselberger M (2001) Canards in r\(^{3} \). J Differ Equ 177:419–453

    Article  Google Scholar 

  • Taylor AL, Marder E (2011) Multiple models to capture the variability in biological neurons and networks. Nat Neurosci 14:133–138

    Article  PubMed  PubMed Central  Google Scholar 

  • Teeter C, Iyer R, Menon V, Gouwens N, Feng D, Berg J, Szafer Z, Cain H, Zeng N, Hawrylycz M, Koch C, Mihalas S (2018) Generalized leaky integrate-and-fire models classify multiple neuron types. Nat Commun 9:709

    Article  PubMed  PubMed Central  Google Scholar 

  • Torben-Nielsen B, Segev I, Yarom Y (2012) The generation of phase differences and frequency changes in a network model of inferior olive subthreshold oscillations. PLoS Comput Biol 8:31002580

    Article  Google Scholar 

  • Touboul J (2008) Bifurcation analysis of a general class of nonlinear integrate-and-fire neurons. SIAM J Appl Math 68:1045-1079

  • Treves A (1993) Mean-field analysis of neuronal spike dynamics. Network 4:259–284

    Article  Google Scholar 

  • Tuckwell HC (1988) Introduction to theoretical neurobiology, vol 2. Cambridge University Press

    Book  Google Scholar 

  • Turnquist AGR, Rotstein HG (2018) Quadratization: from conductance-based models to caricature models with parabolic nonlinearities. In: Jaeger D, Jung R (eds) Encyclopedia of computational neuroscience. Springer-Verlag, New York

    Google Scholar 

  • van der Pol B (1920) A theory of the amplitude of free and forced triode oscillations. Radio Rev 1(701–710):754–762

    Google Scholar 

  • van Geit W, De Schutter E, Achard P (2008) Automated neuron model optimization techniques: a review. Biol Cybern 99:241–251

    Article  PubMed  Google Scholar 

  • Walter E, Pronzato L (1997) Identification of parametric models from experimental data. Springer, London

    Google Scholar 

  • Wang X-J, Buzsáki G (1996) Gamma oscillations by synaptic inhibition in an interneuronal network model. J Neurosci 16:6402–6413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang X-J, Rinzel J (1992) Alternating and synchronous rhythms in reciprocally inhibitory model neurons. Neural Comput 4:84–97

    Article  Google Scholar 

  • Wechselberger M (2005) Existence and bifurcation of canards in R\(^{3} \) in the case of a folded node. SIAM J Appl Dyn Syst 4:101–139

    Article  Google Scholar 

  • Young G (1937) Note on excitation theories. Psychometrika 2:103–106

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge support from the NSF Grants CRCNS-DMS-1608077 (HGR) and IOS-2002863 (HGR), from CONICET, Argentina (UC), and the Fulbright Program (VGB). The authors are thankful to John Rinzel for useful suggestions and discussions. This paper benefited from discussions held as part of the workshop “Current and Future Theoretical Frameworks in Neuroscience” (San Antonio, TX, Feb 4–8, 2019) supported by the NSF Grants DBI-1820631 (HGR) and IOS-1516648 (Fidel Santamaría, co-organizer). This paper also benefited from discussions during the course on “Reduced and simplified spiking neuron models” taught at the VIII Latin American School on Computational Neuroscience (LASCON 2020) organized by Antonio Roque (USP, Brazil) and supported by FAPESP Grants 2013/07699-0 (NeuroMat) and 2019/10496-0 and the IBRO-LARC Schools Funding Program. The authors are grateful to an anonymous reviewer for useful comments and suggestions.

Author information

Authors and Affiliations

Authors

Contributions

HGR conceived the research and the manuscript. All authors wrote the main manuscript, prepared figures and reviewed the manuscript.

Corresponding author

Correspondence to Horacio G. Rotstein.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Communicated by Benjamin Lindner.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chialva, U., González Boscá, V. & Rotstein, H.G. Low-dimensional models of single neurons: a review. Biol Cybern 117, 163–183 (2023). https://doi.org/10.1007/s00422-023-00960-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00422-023-00960-1

Keywords

Navigation