Skip to main content

Advertisement

Log in

Optimal reaching trajectories based on feedforward control

  • Original Article
  • Published:
Biological Cybernetics Aims and scope Submit manuscript

Abstract

In human upper-arm reaching movements, the variance of the hand position increases until the middle of the movement and then decreases toward the endpoint. Such decrease in positional variance has been suggested as an evidence to support the hypothesis that our nervous system uses feedback control, rather than feedforward control, for arm reaching tasks. In this study, we computed the optimal trajectories based on feedforward control under several criteria for a one-link two-muscle arm model with considering the stochastic property of muscle activities in order to reexamine the hypothesis. The results showed that the feedforward control also represents the decrease in positional variance in the latter half of the movement when the control signal is planned under the minimum energy cost and minimum variance models. Furthermore, the optimal trajectory that minimizes energy cost represents not only the decrease in positional variance but also many other characteristics of the human reaching movements, e.g., the three-phasic activity of antagonistic muscle, bell-shaped speed curve, N-shaped equilibrium trajectory, and bimodal profile of joint stiffness. These results suggest that minimum energy cost model well expresses the characteristics of hand reaching movements, and our central nervous system would make use of not only a feedback control but also feedforward control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshiaki Taniai.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare that are relevant to the content of this article.

Additional information

Communicated by Benjamin Lindner.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taniai, Y., Naniwa, T. & Nishii, J. Optimal reaching trajectories based on feedforward control. Biol Cybern 116, 517–526 (2022). https://doi.org/10.1007/s00422-022-00939-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00422-022-00939-4

Keywords

Navigation