Skip to main content
Log in

Generalized neural field theory of cortical plasticity illustrated by an application to the linear phase of ocular dominance column formation in primary visual cortex

  • Original Article
  • Published:
Biological Cybernetics Aims and scope Submit manuscript

Abstract

Physiologically based neural field theory (NFT) is extended to encompass cortical plasticity dynamics. An illustrative application is provided which treats the evolution of the connectivity of left- and right-eye visual stimuli to neuronal populations in the primary visual cortex (V1), and the initial, linear phase of formation of approximately one-dimensional (1D) ocular dominance columns (ODCs) that sets their transverse spatial scale. This links V1 activity, structure, and physiology within a single theory that already accounts for a range of other brain activity and connectivity phenomena, thereby enabling ODC formation and many other phenomena to be interrelated and cortical parameters to be constrained across multiple domains. The results accord with experimental ODC widths for realistic cortical parameters and are based directly on a unified description of the neuronal populations involved, their connection strengths, and the neuronal activity they support. Other key results include simple analytic approximations for ODC widths and the parameters of maximum growth rate, constraints on cortical excitatory and inhibitory gains, elucidation of the roles of specific poles of the V1 response function, and the fact that ODCs are not formed when input stimuli are fully correlated between eyes. This work provides a basis for further generalization of NFT to model other plasticity phenomena, thereby linking them to the range multiscale phenomena accounted for by NFT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Abeysuriya RG, Rennie CJ, Robinson PA (2015) Physiologically based arousal state estimation and dynamics. J Neurosci Methods 253:55–69

    Article  CAS  PubMed  Google Scholar 

  • Adams DL, Horton JC (2006) Monocular cells without ocular dominance columns. J Neurophysiol 96:2253–2264

    Article  PubMed  Google Scholar 

  • Adams DL, Sincich LC, Horton JC (2007) Complete pattern of ocular dominance columns in human primary visual cortex. J Neurosci 27:10391–10403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Amari S (1977) Dynamics of pattern formation in lateral-inhibition type neural fields. Biol Cybern 27:77–87

    Article  CAS  PubMed  Google Scholar 

  • Arfken GB, Weber H (2001) Mathematical methods for physicists. Harcourt/Academic, San Diego

    Google Scholar 

  • Assadzadeh S, Robinson PA (2018) Necessity of the sleep-wake cycle for synaptic homeostasis: system-level analysis of plasticity in the corticothalamic system. R Soc Open Sci 5:171952

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beurle RL (1956) Properties of a mass of cells capable of regenerating pulses. Philos Trans R Soc Lond Ser B Biol Sci 240:55–94

    Google Scholar 

  • Blasdel GG, Salama G (1986) Voltage-sensitive dyes reveal a modualr organization in monkey striate coretx. Nature 321:579–585

    Article  CAS  PubMed  Google Scholar 

  • Bono J, Clopath C (2019) Synaptic plasticity onto inhibitory neurons as a mechanism for ocular dominance plasticity. PLoS Comput Biol 15:e1006834

    Article  PubMed  PubMed Central  Google Scholar 

  • Bressloff PC (2012) Spatiotemporal dynamics of continuum neural fields. J Phys A Math Theor 45:033001

    Article  Google Scholar 

  • Bressloff PC, Cowan JD, Golubitsky M, Thomas PJ, Wiener MC (2002) What geometric visual hallucinations tell us about the visual cortex. Neural Comput 14:473–491

    Article  PubMed  Google Scholar 

  • Chapman B, Jacobson MD, Reiter HO, Stryker MP (1986) Ocular dominance shift in kitten visual cortex caused by imbalance in retinal electrical activity. Nature 324:154–156

    Article  CAS  PubMed  Google Scholar 

  • Coombes S, Biem Graben P, Potthurst R, Wright J (2014) Neural fields: theory and applications. Springer, Berlin

    Book  Google Scholar 

  • Crair MC, Ruthazer ES, Gillespie DC, Stryker MP (1997) Relationship between the ocular dominance and orientation maps in visual cortex of monocularly deprived cats. Neuron 19:307–318

    Article  CAS  PubMed  Google Scholar 

  • Dayan P, Abbott LF (2001) Theoretical neuroscience: computational and mathematical modeling of neural systems. MIT, Cambridge

    Google Scholar 

  • Deco G, Jirsa VK, Robinson PA, Breakspear M, Friston K (2008) The dynamic brain: from spiking neurons to neural masses and cortical fields. PLoS Comput Biol 4:e1000092

    Article  PubMed  PubMed Central  Google Scholar 

  • Erwin E, Miller KD (1998) Correlation-based development of ocularly matched orientation and ocular dominance maps: determination of required input activities. J Neurosci 18:9870–9895

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Erwin E, Obermayer K, Schulten K (1995) Models of orientation and ocular dominance columns in the visual cortex: a critical comparison. Neural Comput 7:425–468

    Article  CAS  PubMed  Google Scholar 

  • Freeman WJ (1975) Mass action in the nervous system. Academic Press, New York

    Google Scholar 

  • Frégnac Y, Imbert M (1977) Early development of visual cortical cells in normal and dark-reared kittens: relationship between orientation selectivity and ocular dominance. J Physiol 278:27–44

    Article  Google Scholar 

  • Fung PK, Haber AL, Robinson PA (2013) Neural field theory of plasticity in the cerebral cortex. J Theor Biol 318:44–57

    Article  CAS  PubMed  Google Scholar 

  • Goodhill GJ (2018) Theoretical models of neural development. Science 8:183–199

    CAS  Google Scholar 

  • Goodhill GJ, Willshaw DJ (1990) Application of the elastic net algorithm to the formation of ocular dominance stripes. Network 1:41–59

    Article  Google Scholar 

  • Henke H, Robinson PA, Drysdale PM, Loxley PN (2014) Spatiotemporally varying visual hallucinations: 1. Corticothalamic theory. J Theor Biol 357:200–209

    Article  CAS  PubMed  Google Scholar 

  • Hirsch HVB, Spinelli DN (1970) Visual experience modifies distribution of horizontally and vertically oriented receptivefields in cats. Science 168:869–871

    Article  CAS  PubMed  Google Scholar 

  • Horton JC, Hocking DR (1996) An adult-like pattern of ocular dominance columns in striate cortex of newborn monkeys prior to visual experience. J Neurosci 16:1791–1807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hubel DH, Wiesel TN (1972) Laminar and columnar distribution of geniculo-cortical fibers in the macaque monkey. J Comp Neur 146:421–450

    Article  CAS  PubMed  Google Scholar 

  • Hubel DH, Wiesel TN (1977) Functional architecture of macaque monkey visual cortex. Philos Trans R Soc Lond B 198:1–59

    CAS  Google Scholar 

  • Hubel DH, Wiesel TN, LeVay S (1977) Plasticity of ocular dominance columns in monkey striate cortex. Philos Trans R Soc Lond B 278:377–409

    Article  CAS  Google Scholar 

  • Huberman AD, Feller MB, Chapman B (2008) Mechanisms underlying development of visual maps and receptive fields. Ann Rev Neurosci 31:479–509

    Article  CAS  PubMed  Google Scholar 

  • Humphrey AL, Albano JE, Norton TT (1977) Organization of ocular dominance in tree shrew striate cortex. Brain Res 134:225–236

    Article  CAS  PubMed  Google Scholar 

  • Jirsa VK, Haken H (1996) Field theory of electromagnetic brain activity. Phys Rev Lett 77:960–963

    Article  CAS  PubMed  Google Scholar 

  • Kandel ER, Schwartz JH, Jessell TM (2000) Principles of neural science. Mc Graw-Hill, New York

    Google Scholar 

  • Katz LC, Crowley JC (2002) Development of cortical circuits: lessons from ocular dominance columns. Nat Rev Neurosci 3:34–42

    Article  CAS  PubMed  Google Scholar 

  • Koch C (1999) Biophysics of computation: information processing in single neurons. Oxford University Press, New York

    Google Scholar 

  • Kohonen T (1993) Physiological interpretation of the self-organizing map algorithm. Neural Netw 6:895–905

    Google Scholar 

  • Legéndy CR (1978) Cortical columns and the tendency of neighboring neurons to act similarly. Brain Res 158:89–105

    Article  PubMed  Google Scholar 

  • Levay S, Wiesel TN, Hubel DH (1980) The development of ocular dominance columns in normal and visually deprived monkeys. J Comp Neurol 191:1–51

    Article  CAS  PubMed  Google Scholar 

  • Linsker R (1986) From basic network principles to neural architecture: emergence of spatial-opponent cells. Proc Natl Acad Sci USA 83:7508–7512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Linsker R (1989) How to generate ordered maps by maximizing the mutual information between input and output signals. Neural Comput 1:402–411

    Article  Google Scholar 

  • Lopes da Silva FH, van Rotterdam A, Barts P, van Heusden E, Burr W (1976) Models of neuronal populations: the basic mechanisms of rhythmicity. Prog Brain Rest 45:281

    Article  CAS  Google Scholar 

  • Löwel S (1994) Ocular dominance column development: strabismus changes the spacing of adjacent columns in cat visual cortex. J Neurosci 14:7451–7468

    Article  PubMed  PubMed Central  Google Scholar 

  • McLaughlin T, Torborg CL, Feller MB, O’Leary DM (2003) Retinotopic map refinement requires spontaneous retinal waves during a brief critical period of development. Neuron 40:1147–1160

  • Miller KD (1994) A model for the development of simple cell receptive fields and the ordered arrangement of orientation columns through activity-dependent competition between ON- and OFF-center inputs. J Neurosci 14:409–441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miller KD, Keller JB, Stryker MP (1989) Ocular dominance column development: analysis and simulation. Science 245:605–615

    Article  CAS  PubMed  Google Scholar 

  • Nunez PL (1995) Neocortical dynamics and human EEG rhythms. Oxford University Press, Oxford

    Google Scholar 

  • Obermayer K, Sejnowski TJ (2001) Self-organizing map formation: foundation of neural computation. MIT, Cambridge

    Google Scholar 

  • Obermayer K, Blasdel GG, Schulten K (1992) Statistical-mechanical analysis of self-organization and pattern formation during the development of visual maps. Phys Rev A 45:7568–7589

    Article  CAS  PubMed  Google Scholar 

  • Reichl L, Heide D, Löwel S, Crowley JC, Kaschube M, Wolf F (2012a) Coordinated optimization of visual cortical maps (I) symmetry-based analysis. PLoS Comput Biol 8:e1002466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reichl L, Heide D, Löwel S, Crowley JC, Kaschube M, Wolf F (2012b) Coordinated optimization of visual cortical maps (II) numerical studies. PLoS Comput Biol 8:e1002756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rennie CJ, Robinson PA, Wright JJ (1999) Effects of local feedback on dispersion of electrical waves in the cerebral cortex. Phys Rev E 59:3320

    Article  CAS  Google Scholar 

  • Robinson PA (2005) Propagator theory of brain dynamics. Phys Rev E 72:011904

    Article  CAS  Google Scholar 

  • Robinson PA (2007) Visual gamma oscillations: waves, correlations, and other phenomena, including comparison with experimental data. Biol Cybern 97:317–335

    Article  CAS  PubMed  Google Scholar 

  • Robinson PA (2011) Neural field theory of synaptic plasticity. J Theor Biol 285:156–163

    Article  CAS  PubMed  Google Scholar 

  • Robinson PA (2019) Physical brain connectomics. Phys Rev E 99:012421

    Article  CAS  PubMed  Google Scholar 

  • Robinson PA, Roy N (2015) Neural field theory of nonlinear wave-wave and wave-neuron processes. Phys Rev E 91:062719

    Article  CAS  Google Scholar 

  • Robinson PA, Rennie CJ, Wright JJ (1997) Propagation and stability of waves of electrical activity in the cerebral cortex. Phys Rev E 56(1):826–840

    Article  CAS  Google Scholar 

  • Robinson PA, Rennie CJ, Rowe DL (2002) Dynamics of large-scale brain activity in normal arousal states and epileptic seizures. Phys Rev E 65:041924

    Article  CAS  Google Scholar 

  • Robinson PA, Rennie CJ, Rowe DL, O’Connor SC (2004a) Estimation of multiscale neurophysiologic parameters by EEG means: consistency and complementarity versus independent measures. Hum Brain Mapp 23:53–72

  • Robinson PA, Rennie CJ, Rowe DL, O’Connor SC (2004b) Estimation of multiscale neurophysiologic parameters by electroencephalographic means. Hum Brain Mapp 23:53–72

  • Scherf O, Pawelzik K, Wolf F, Geisel T (1999) Theory of ocular dominance pattern formation. Phys Rev E 59:6977–6993

    Article  CAS  Google Scholar 

  • Sengpiel F, Stawinski P, Bonhoeffer T (1999) Influence of experience on orientation maps in cat visual cortex. Nat Neurosci 2:727–732

    Article  CAS  PubMed  Google Scholar 

  • Steyn-Ross ML, Steyn-Ross DA, Bonhoeffer T, Wilson MT, Wilcocks LC (2005) Proposed mechanism for learning and memory erasure in a white-noise-driven sleeping cortex. Phys Rev E 72:061910

    Article  Google Scholar 

  • Stryker MP, Sherk H, Leventhal AG, Hirsch HVB (1978) Physiological consequences for the cats visual cortex of effectively restricting early visual experience with oriented contours. J Neurophysiol 41:896–909

    Article  CAS  PubMed  Google Scholar 

  • Swindale NV (1980a) A model for the formation of ocular dominance stripes. Proc R Soc Lond Ser B Biol Sci 208:243–264

    CAS  Google Scholar 

  • Swindale NV (1980b) A model for the formation of ocular dominance stripes. Proc R Soc Lond B 208:243–264

    Article  CAS  PubMed  Google Scholar 

  • Swindale NV (1996) The development of topography in the visual cortex: a review of models. Netw Comput Neural Syst 7:161–247

    Article  CAS  Google Scholar 

  • Tanaka S (1991) Theory of ocular dominance column formation. Biol Cybern 64:263–272

    Article  CAS  PubMed  Google Scholar 

  • Tononi G, Cirelli C (2003) Sleep and synaptic homeostasis: a hypothesis. Brain Res Bull 15:143–150

    Article  Google Scholar 

  • Wilson HR, Cowan JD (1972) Excitatory and inhibitory interactions in localized populations of model neurons. Biophys J 12:1–24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilson MT, Fulcher BD, Fung PK, Robinson PA, Fornito A, Rogasch NC (2018) Biophysical modeling of neural plasticity induces by transcranial magnetic stimulation. Clin Neurophysiol 129:1230–1241

    Article  PubMed  Google Scholar 

  • Wolf F (2005) Symmetry, multistability, and long-range interactions in brain development. Phys Rev Lett 95:208701

    Article  PubMed  Google Scholar 

  • Wolf F, Geisel T (2003) Universality in visual cortical pattern formation. J Physiol Paris 97:253–264

    Article  CAS  PubMed  Google Scholar 

  • Wolf F, Pawelzik K, Scherf O, Geisel T, Löwel S (2000) How can squint change the spacing of ocular dominance columns? J Physiol Paris 94:525–537

    Article  CAS  PubMed  Google Scholar 

  • Wright JJ, Liley DTJ (1996) Dynamics of the brain at global and microscopic scales: neural networks and the EEG. Behav Brain Sci 19:285–295

    Article  Google Scholar 

  • Zenke F, Gerstner W (2017) Hebbian plasticity requires compensatory processes on multiple timescales. Philos Trans R Soc B 372:20160259

    Article  Google Scholar 

Download references

Acknowledgements

We thank S. Assadzadeh for helpful discussions. This work was supported by Australian Research Council Center of Excellence Grant CE140100007 and Australian Research Council Laureate Fellowship Grant FL1401000225.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. A. Henderson.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by Benjamin Lindner.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aghili Yajadda, M.M., Robinson, P.A. & Henderson, J.A. Generalized neural field theory of cortical plasticity illustrated by an application to the linear phase of ocular dominance column formation in primary visual cortex. Biol Cybern 116, 33–52 (2022). https://doi.org/10.1007/s00422-021-00901-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00422-021-00901-w

Keywords

Navigation