Skip to main content

Time- and frequency-resolved covariance analysis for detection and characterization of seizures from intracraneal EEG recordings

Abstract

The amount of power in different frequency bands of the electroencephalogram (EEG) carries information about the behavioral state of a subject. Hence, neurologists treating epileptic patients monitor the temporal evolution of the different bands. We propose a covariance-based method to detect and characterize epileptic seizures operating on the band-filtered EEG signal. The algorithm is unsupervised and performs a principal component analysis of intra-cranial EEG recordings, detecting transient fluctuations of the power in each frequency band. Its simplicity makes it suitable for online implementation. Good sampling of the non-ictal periods is required, while no demands are imposed on the amount of data during ictal activity. We tested the method with 32 seizures registered in 5 patients. The area below the resulting receiver-operating characteristic curves was 87% for the detection of seizures and 91% for the detection of recruited electrodes. To identify the behaviorally relevant correlates of the physiological signal, we identified transient changes in the variance of each band that were correlated with the degree of loss of consciousness, the latter assessed by the so-called Consciousness Seizure Scale, summarizing the performance of the subject in a number of behavioral tests requested during seizures. We concluded that those crisis with maximal impairment of consciousness tended to exhibit an increase in variance approximately 40 s after seizure onset, with predominant power in the theta and alpha bands and reduced delta and beta activity.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Aggarval G, Ghandi TK (2017) Prediction of epileptic seizures based on mean phase coherence. BioArXiv 1–4

  2. Alotaiby TN, Alshebeili SA, Alshawi T, Ahmad I, Abd El-Samie FE (2014) Eeg seizure detection and prediction algorithms: a survey. EURASIP J Adv Signal Process 183:1–21

    Google Scholar 

  3. Arthuis M, Valton L, Règis J, Chauvel P, Wendling F, Naccache L, Bernard C, Bartolomei F (2009) Impaired consciousness during temporal lobe seizures is related to increased long-distance cortical–subcortical synchronization. Brain 132(8):2091–2101

    PubMed  Google Scholar 

  4. Bancaud J, Talairach J, Bonis A, Schaub C, Szikla G, Borel P, Bordas Ferrer M (1965) La stérpeo-électro-encéphalographie dans l’ épilepsie: informations neurophysiopathologiques apportées par l’investigation fonctionnelle stereotaxique. Masson, Paris

    Google Scholar 

  5. Bartolomei F, Chauvel P, Wendling F (2008) Epileptogenicity of brain structures in human temporal lobe epilepsy: a quantified study from intracerebral eeg. Brain 131(7):1818–1830

    PubMed  Google Scholar 

  6. Berger H (1929) über das elektroenkephalogramm des menschen. Arch Psychiatr Nervenkrankh 87(527):570

    Google Scholar 

  7. Blumenfeld H (2012) Impaired consciousness in epilepsy. Lancet Neurol 11(9):814–826

    PubMed  PubMed Central  Google Scholar 

  8. Bonini F, Lambert I, Wendling FW, McGonigal A, Bartolomei F (2016) Altered synchrony and loss of consciousness during frontal lobe seizures. Lancet Neurol 12(2):1170–1175

    Google Scholar 

  9. Boubchir L, Al-Maadeed S, Bouridane A (2014) Haralick feature extraction from time-frequency images for epileptic seizure detection and classification of eeg data. In: 26th international conference on microelectronics. IEEE, pp 32–35

  10. Boubchir L, Al-Maadeed S, Bouridane A, Chèrif AA (2015) Time-frequency image descriptors-based features for eeg epileptic seizure activities detection and classification. In IEEE 40th international conference on acoustics, speech and signal processing. IEEE, pp 867–871

  11. Boubchir L, Boubaker D, Pangracious V (2017) A review of feature extraction for eeg epileptic seizure detection and classification. In: IEEE 40th international conference on telecommunications and signal processing. IEEE, pp 456–460

  12. Bryant HL, Segundo JP (1976) Spike initiation by trans-membrane current: a white-noise analysis. J Physiol 260(2):279–314

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Cámpora N, Kochen S (2016) Subjective and objective characteristics of altered consciousness during epileptic seizures. Epilepsy Behav 55:128–132

    PubMed  Google Scholar 

  14. Cámpora N, Mininni CJ, Kochen S, Lew SE (2019) Seizure localization using pre ictal phase-amplitude coupling in intracranial electroencephalography. Scientific Reports 9(1):20022

    PubMed  PubMed Central  Google Scholar 

  15. Cauller LJ, Kulics AT (1988) Comparison of awake and sleeping cortical states by analysis of the somatosensory-evoked response of postcentral area 1 in rhesus monkey. Exp Brain Res 72(3):584–592

    CAS  PubMed  Google Scholar 

  16. Courtens S, Colombet BC, Trèbuchon AT, Bènar C (2016) Graph measures of node strength for characterizing preictal synchrony in partial epilepsy. Brain Connect 6(7):530–539

    PubMed  Google Scholar 

  17. Crick F, Koch C (1989) Towards a neurobiological theory of consciousness. Semin Neurosci 2:263–275

    Google Scholar 

  18. Danielson NB, Guo JN, Blumenfeld H (2011) The default mode network and altered consciousness in epilepsy. Behav Neurol 24(1):55–65

    PubMed  PubMed Central  Google Scholar 

  19. de Ruyter van Steveninck R, Bialek W (1988) Real-time performance of a movement-sensitive neuron in the blowfly visual system: coding and information transmission in short spike sequences. Proc R Soc Lond Ser B Biol Sci 234(1277):379–414

    Google Scholar 

  20. Dellavale D, Urdapilleta E, Cámpora N, Velarde OM, Kochen S, Mato G (2020) Prediction of epileptic seizures based on mean phase coherence. BioArXiv 1–60

  21. Donos C, Dümpelmann M, Schulze-Bonhage A (2015) Early seizure detection algorithm based on intracranial eeg and random forest classification. Int J Neural Syst 25(5):1550023

    PubMed  Google Scholar 

  22. Edakawa K, Yanagisawa T, Kishima H, Fukuma R, Oshino S, Koo HM, Kobayashi M, Tanake M, Yoshimine T (2016) Detection of epileptic seizures using phase-amplitude coupling in intracranial electroencephalography. Sci Rep 6:25422

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Englot DJ, Yang LY, Hamid H, Danielson N, Bai X, Marfeo A, Yu LY, Gordon A, Purcaro MJ, Motelow JE, Agarwal R, Ellens DJ, Golomb JD, Shamy MCF, Zhang H, Carlson CC, Doyle W, Devinsky O, Vives K, Spencer DD, Spencer SS, Schevon C, Zaveri HP, Blumenfeld H (2010) Impaired consciousness in temporal lobe seizures:role of cortical slow activity. Brain 133(12):3764–3777

    PubMed  PubMed Central  Google Scholar 

  24. Evangelista E, Bènar C, Bonini F, Carron R, Colombet B, Règis J, Bartolomei F (2015) Does the thalamo-cortical synchrony play a role in seizure termination? Front Neurol 6:192

    PubMed  PubMed Central  Google Scholar 

  25. Feng L, Motelow JE, Ma C, Biche W, McCafferty C, Smith N, Liu M, Zhan Q, Jia R, Xiao B, Duque A, Blumenfeld H (2017) Seizures and sleep in the thalamus: Focal limbic seizuresshow divergent activity patterns in different thalamic nuclei. J Neurosci 37(47):11441–11454

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Gray CM, König P, Engel AK, Singer W (1989) Oscillatory responses in cat visual cortex exhibit intercolumnar synchronization which reflects global stimulus properties. Nature 338(6213):334

    CAS  PubMed  Google Scholar 

  27. Harner R (2009) Automatic eeg spike detection. Clin EEG Neurosci 40(4):262–270

    PubMed  Google Scholar 

  28. Heller S MH, Nematollahi I, Manzouri F, Dümpelmann M, Schulze-Bonhage, A, Boedecker JPW (2018). Hardware implementation of a performance and energy-optimized convolutional neural network for seizure detection. In: 40th annual international conference of the ieee engineering in medicine and biology society, pp 2268–2271

  29. Hugle M, Heller S, Watter M, Blum M, Manzouri F, Dumpelmann M, Schulze-Bonhage A, Woias P, Boedecker J (2018) Early seizure detection with an energy-efficient convolutional neural network on an implantable microcontroller. arXiv:1806.04549

  30. Kharbouch A, Shoeb A, Guttag J, Cash SS (2011) An algorithm for seizure onset detection using intracranial eeg. Epilepsy Behav 22(1):S29–S35

    PubMed  PubMed Central  Google Scholar 

  31. Klimesch W, Doppelmayr M, Pachinger T, Russegger H (1997) Event-related desynchronization in the alpha band and the processing of semantic information. Cogn Brain Res 6(2):83–94

    CAS  Google Scholar 

  32. Klimesch W, Doppelmayr M, Schwaiger J, Auinger P, Winkler T (1999) Paradoxical’ alpha synchronization in a memory task. Epilepsy Behav 7(4):493–501

    CAS  Google Scholar 

  33. Klimesch W, Sauseng P, Hanslmayr S (2007) Eeg alpha oscillations: the inhibition-timing hypothesis. Brain Res Rev 53(7):63–88

    PubMed  Google Scholar 

  34. Koch C, Massimini M, Boly MB, Tononi G (2016) Neural correlates of consciousness: progress and problems. Nat Rev Neurosci 17:307–321

    CAS  PubMed  Google Scholar 

  35. Liu Y, Zhou W, Yuan Q, Chen S (2012) Automatic seizure detection using wavelet transform and svm in long-term intracranial eeg. IEEE Trans Neural Syst Rehabil Eng 20(6):749–755

    PubMed  Google Scholar 

  36. Liu Y-C, Lin C-CK, Lin J-JT, Sun Y-N (2013) Model-based spike detection of epileptic eeg data. Sensors 13(9):12536–12547

    PubMed  Google Scholar 

  37. Liu Y, Wang J, Wang Cai L, Chen Y, Qin Y (2017) Epileptic seizure detection from eeg signals with phase-amplitude cross-frequency coupling and support vector machine. Int J Mod Phys 32(8):1850086

    Google Scholar 

  38. Norden AD, Blumenfeld H (2002) The role of subcortical structures in human epilepsy. Epilepsy Behav 3(3):219–231

    PubMed  Google Scholar 

  39. Orosco L, Garcés Correa A, Laciar E (2013) Review: a survey of performance and techniques for automatic epilepsy detection. J Med Biol Eng 33(6):526–537

    Google Scholar 

  40. Redinbaugh MJ, Phillips JM, Kambi NA, Mohanta S, Andryk S, Dooley GL, Afrasiabi M, Raz A, Saalmann YB (2020) Thalamus modulates consciousness via layer-specific control of cortex. Neuron 106(1):66–75

    PubMed  Google Scholar 

  41. Romei VR, Gross J, Thut G (2007) On the role of prestimulus alpha rhythms over occipito-parietal areas in visual input regulation: correlation or causation? J Neurosci 30(25):8692–8697

    Google Scholar 

  42. Samengo I, Gollisch T (2013) Spike-triggered covariance revisited: geometric proof, symmetry properties and extension beyond gaussian stimuli. J Comput Neurosci 34(1):137–161

    PubMed  Google Scholar 

  43. Sauseng P, Klimesch W, Stadler W, Schabus M, Doppelmayr M, Hanslmayr S, Gruber WR, Birbaumer N (2005) A shift of visual spatial attention is selectively associated with human eeg alpha activity. Eur J Neurosci 22(11):2917–2926

    CAS  PubMed  Google Scholar 

  44. Sauseng P, Feldheim JF, Freunberger R, Hummel FC (2011) Right prefrontal tms disrupts interregional anticipatory eeg alpha activity during shifting of visuospatial attention. Front Psychol 2:241

    PubMed  PubMed Central  Google Scholar 

  45. Schevon CA, Cappell J, Emerson RG, Isler JR, Grieve PG, Goodman RR, McKhann GM, Wiener H, Doyle WK, Kuzniecky R, Devinsky O, Gillian FG (2007) Cortical abnormalities in epilepsy revealed by local eeg synchrony. Neuroimage 35(1):140–148

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Schiff ND, Nauvel TN, Victor JD (2014) Large-scale brain dynamics in disorders of consciousness. Curr Opin Neurobiol 25:7–14

    CAS  PubMed  Google Scholar 

  47. Simoncelli EP, Paninski L, Pillow J, Schwartz O (2004) Characterization of neural responses with stochastic stimuli. In: Gazzaniga M (ed) The cognitive neurosciences, chapter 23. MIT Press, Cambridge, pp 327–338

  48. Tzallas AT, Tsipouras MG, Tsalikakis DG, Karvounis EC, Astrakas L, Konitsiotis S, Tzaphlidou M (2012) Automated epileptic seizure detection methods: A review study. In: Stevanovic D (ed) Epilepsy-histological, electroencephalographic and psychological aspects, chapter 4. IntechOpen, Rijeka, pp 75–98

    Google Scholar 

  49. Ulate-Campos A, Couhlin F, Gaínza-Lein M, Sánchez Fernández I, Pearl PL, Loddenkemper T (2016) Automated seizure detection systems and their effectiveness for each type of seizure. Seizure 40:88–101

    CAS  PubMed  Google Scholar 

  50. Wang G, Sun Z, Tao R, Li K, Bao G, Yan X (2017) Epileptic seizure detection based on partial directed coherence analysis. IEEE J Biomed Health Inform 20(3):873–879

    Google Scholar 

  51. Warren CP, Hu S, Stead M, Brinkmann BH, Bower MRB, Worrell GA (2010) Synchrony in normal and focal epileptic brain: the seizure onset zone is functionally disconnected. J Neurophysiol 104(6):3530–3539

    PubMed  PubMed Central  Google Scholar 

  52. Wilson SB, Emerson R (2002) Spike detection: a review and comparison of algorithms. Clin Neurophysiol 113(12):1873–1881

    PubMed  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Inés Samengo.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was supported by Agencia Nacional de Investigaciones Científicas y Técnicas PICT Raíces 2014 N. 1004, Consejo Nacional de Investigaciones Científicas y Técnicas PIP 0256.

Communicated by Benjamin Lindner.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Maidana Capitán, M., Cámpora, N., Sigvard, C.S. et al. Time- and frequency-resolved covariance analysis for detection and characterization of seizures from intracraneal EEG recordings. Biol Cybern 114, 461–471 (2020). https://doi.org/10.1007/s00422-020-00840-y

Download citation

Keywords

  • EEG
  • Epilepsy
  • Consciousness
  • Principal component analysis