Skip to main content
Log in

Simulating Small Neural Circuits with a Discrete Computational Model

  • Original Article
  • Published:
Biological Cybernetics Aims and scope Submit manuscript

Abstract

Simulations of neural activity are commonly based on differential equations. We address the question what can be achieved with a simplified discrete model. The proposed model resembles artificial neural networks enriched with additional biologically inspired features. A neuron has several states, and the state transitions follow endogenous patterns which roughly correspond to firing behavior observed in biological neurons: oscillatory, tonic, plateauing, etc. Neural interactions consist of two components: synaptic connections and extrasynaptic emission of neurotransmitters. The dynamics is asynchronous and event-based; the events correspond to the changes in neurons activity. This model is innovative in introducing discrete framework for modeling neurotransmitter interactions which play the important role in neuromodulation. We simulate rhythmic activity of small neural ensembles like central pattern generators (CPG). The modeled examples include: the biphasic rhythm generated by the half-center mechanism with the post-inhibitory rebound (like the leech heartbeat CPG), the triphasic rhythm (like in pond snail feeding CPG) and the pattern switch in the system of several neurons (like the switch between ingestion and egestion in Aplysia feeding CPG). The asynchronous dynamics allows to obtain multi-phasic rhythms with phase durations close to their biological prototypes. The perspectives of discrete modeling in biological research are discussed in the conclusion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Ausborn J, Snyder AC, Shevtsova NA, Rybak IA, Rubin JE (2018) State-dependent rhythmogenesis and frequency control in a half-center locomotor cpg. J Neurophysiol 119(1):96–117

    PubMed  Google Scholar 

  • Benjamin Paul R (2012) Distributed network organization underlying feeding behavior in the mollusk lymnaea. Neural Syst Circuits 2(1):4

    PubMed  PubMed Central  Google Scholar 

  • Boldyshev B Asynchronous-network: discrete model for multitransmitter neural interactions. https://github.com/Boldyshev/asynchronous-network. Accessed 13 Feb 2020

  • Boussema C, Powell MJ, Bledt G, Ijspeert AJ, Wensing PM, Kim S (2019) Online gait transitions and disturbance recovery for legged robots via the feasible impulse set. IEEE Robot Autom Lett 4(2):1611–1618

    Google Scholar 

  • Brette Romain, Gerstner Wulfram (2005) Adaptive exponential integrate-and-fire model as an effective description of neuronal activity. J Neurophysiol 94(5):3637–3642

    PubMed  Google Scholar 

  • Brette Romain, Rudolph Michelle, Carnevale Ted, Hines Michael, Beeman David, Bower James M, Diesmann Markus, Morrison Abigail, Goodman Philip H, Harris Frederick C et al (2007) Simulation of networks of spiking neurons: a review of tools and strategies. J Comput Neurosci 23(3):349–398

    PubMed  PubMed Central  Google Scholar 

  • Brookings Ted, Goeritz Marie L, Marder Eve (2014) Automatic parameter estimation of multicompartmental neuron models via minimization of trace error with control adjustment. J Neurophysiol 112(9):2332–2348

    PubMed  PubMed Central  Google Scholar 

  • Brown TG (1911) The intrinsic factors in the act of progression in the mammal. Proc R Soc Lond B 84(572):308–319

    Google Scholar 

  • Dacks AM, Weiss KR (2013) Latent modulation: a basis for non-disruptive promotion of two incompatible behaviors by a single network state. J Neurosci 33(9):3786–3798

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dan Y, Poo MM (2004) Spike timing-dependent plasticity of neural circuits. Neuron 44(1):23–30

    CAS  PubMed  Google Scholar 

  • Danner SM, Shevtsova NA, Frigon A, Rybak IA (2017) Computational modeling of spinal circuits controlling limb coordination and gaits in quadrupeds. Elife 6:e31050

    PubMed  PubMed Central  Google Scholar 

  • Daun S, Rubin JE, Rybak IA (2009) Control of oscillation periods and phase durations in half-center central pattern generators: a comparative mechanistic analysis. J Comput Neurosci 27(1):3

    PubMed  PubMed Central  Google Scholar 

  • Drion Guillaume, Franci Alessio, Sepulchre Rodolphe (2019) Cellular switches orchestrate rhythmic circuits. Biol Cybern 113(1):71–82

    PubMed  Google Scholar 

  • Duysens J, De Groote F, Jonkers I (2013) The flexion synergy, mother of all synergies and father of new models of gait. Front Comput Neurosci 7:14

    PubMed  PubMed Central  Google Scholar 

  • FitzHugh R (1969) Mathematical models of excitation and propagation in nerve. In: Schwan HP (ed) Biological Engineering, chapter 1. McGraw-Hill Book Co., New York, pp 1–85

    Google Scholar 

  • Friedman AK, Weiss KR, Cropper EC (2015) Specificity of repetition priming: the role of chemical coding. J Neurosci 35(16):6326–6334

    CAS  PubMed  PubMed Central  Google Scholar 

  • Graupner Michael, Gutkin Boris (2009) Modeling nicotinic neuromodulation from global functional and network levels to nachr based mechanisms. Acta Pharmacol Sin 30(6):681

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gutierrez GJ, Marder E (2014) Modulation of a single neuron has state-dependent actions on circuit dynamics. Eneuro 1(1):ENEURO.0009-14.2014. https://doi.org/10.1523/ENEURO.0009-14.2014

  • Hägglund Martin, Dougherty Kimberly J, Borgius Lotta, Itohara Shigeyoshi, Iwasato Takuji, Kiehn Ole (2013) Optogenetic dissection reveals multiple rhythmogenic modules underlying locomotion. Proc Natl Acad Sci 110(28):11589–11594

    PubMed  PubMed Central  Google Scholar 

  • Hill AA, Lu J, Masino MA, Olsen OH, Calabrese RL (2001) A model of a segmental oscillator in the leech heartbeat neuronal network. J Comput Neurosci 10(3):281–302

    CAS  PubMed  Google Scholar 

  • Hodgkin AL, Huxley AF (1952) A quantitative description of membrane current and its applications to conduction and excitation in nerve. J Physiol (Lond) 116:500–544

    Google Scholar 

  • Ijspeert Auke Jan (2001) A connectionist central pattern generator for the aquatic and terrestrial gaits of a simulated salamander. Biol Cybern 84(5):331–348

    CAS  PubMed  Google Scholar 

  • Ijspeert Auke Jan (2008) Central pattern generators for locomotion control in animals and robots: a review. Neural Netw 21(4):642–653

    PubMed  Google Scholar 

  • Izhikevich Eugene M (2003) Simple model of spiking neurons. IEEE Trans Neural Netw 14(6):1569–1572

    CAS  PubMed  Google Scholar 

  • Izhikevich Eugene M, Edelman Gerald M (2008) Large-scale model of mammalian thalamocortical systems. Proc Natl Acad Sci 105(9):3593–3598

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jing J, Cropper EC, Hurwitz I, Weiss KR (2004) The construction of movement with behavior-specific and behavior-independent modules. J Neurosci 24(28):6315–6325

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jing Jian, Weiss Klaudiusz R (2001) Neural mechanisms of motor program switching in aplysia. J Neurosci 21(18):7349–7362

    CAS  PubMed  PubMed Central  Google Scholar 

  • Katz P (1999) Beyond neurotransmission. Oxford University Press, New York, pp 349–381

    Google Scholar 

  • Kemenes G, Elliott CJ (1994) Analysis of the feeding motor pattern in the pond snail, lymnaea stagnalis: photoinactivation of axonally stained pattern-generating interneurons. J Neurosci 14(1):153–166

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kiehn O (2016) Decoding the organization of spinal circuits that control locomotion. Nat Rev Neurosci 17(4):224

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kristan WB Jr, Shaw BK (1997) Population coding and behavioral choice. Current Opin Neurobiol 7(6):826–831

    Google Scholar 

  • Kuznetsov OP, Bazenkov NI, Boldyshev BA, Yu Zhilyakova L, Kulivets SG, Chistopolsky IA (2018) An asynchronous discrete model of chemical interactions in simple neuronal systems. Sci Tech Inf Process 45(6):375–389

    Google Scholar 

  • Lodi M, Shilnikov AL, Storace M (2019) Design principles for central pattern generators with preset rhythms. IEEE Trans Neural Networks Learn Syst. https://doi.org/10.1109/TNNLS.2019.2945637

    Article  Google Scholar 

  • Lodi Matteo, Shilnikov Andrey, Storace Marco (2017) Cepage: a toolbox for central pattern generator analysis. In: 2017 IEEE international symposium on circuits and systems (ISCAS), IEEE, pp 1–4

  • Marder Eve, Bucher Dirk (2001) Central pattern generators and the control of rhythmic movements. Curr Biol 11(23):R986–R996

    CAS  PubMed  Google Scholar 

  • Morris Catherine, Lecar Harold (1981) Voltage oscillations in the barnacle giant muscle fiber. Biophys J 35(1):193–213

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nagumo J, Arimoto S, Yoshizawa S (1962) An active pulse transmission line simulating nerve axon. Proc IRE 50(10):2061–2070

    Google Scholar 

  • Neymotin Samuel A, Heekyung Lee, Eunhye Park, Fenton André A, Lytton William W (2011) Emergence of physiological oscillation frequencies in a computer model of neocortex. Front Comput Neurosci 5:19

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pecevski D, Kappeland D, Jonke Z (2014) Nevesim: event-driven neural simulation framework with a python interface. Front Neuroinf 8:70

    Google Scholar 

  • Popescu IR, Frost WN (2002) Highly dissimilar behaviors mediated by a multifunctional network in the marine mollusk tritonia diomedea. J Neurosci 22(5):1985–1993

    CAS  PubMed  PubMed Central  Google Scholar 

  • Prinz Astrid A, Bucher Dirk, Marder Eve (2004) Similar network activity from disparate circuit parameters. Nat Neurosci 7(12):1345

    CAS  PubMed  Google Scholar 

  • Purves D, Augustine G, Fitzpatrick D, Hall WC, LaMantia A, Mooney R, White LE (2018) Neuroscience, 6th edn. Oxford University Press, Oxford

    Google Scholar 

  • Roberts Patrick D (1998) Classification of temporal patterns in dynamic biological networks. Neural Comput 10(7):1831–1846

    CAS  PubMed  Google Scholar 

  • Rose RM, Benjamin PR (1981) Interneuronal control of feeding in the pond snail lymnaea stagnalis: I. initiation of feeding cycles by a single buccal interneurone. J Exp Biol 92(1):187–201

    Google Scholar 

  • Rulkov Nikolai F (2002) Modeling of spiking-bursting neural behavior using two-dimensional map. Phys Rev E 65(4):041922

    Google Scholar 

  • Sakurai A, Katz PS (2016) The central pattern generator underlying swimming in dendronotus iris: a simple half-center network oscillator with a twist. J Neurophysiol 116(4):1728–1742

    PubMed  PubMed Central  Google Scholar 

  • Sharp AA, Skinner FK, Marder E (1996) Mechanisms of oscillation in dynamic clamp constructed two-cell half-center circuits. J Neurophysiol 76(2):867–883

    CAS  PubMed  Google Scholar 

  • Sjostrom PJ, Rancz EA, Roth A, Hausser M (2008) Dendritic excitability and synaptic plasticity. Physiol Rev 88(2):769–840

    CAS  PubMed  Google Scholar 

  • Spardy Lucy E, Lewis Timothy J (2018) The role of long-range coupling in crayfish swimmeret phase-locking. Biol Cybern 112(4):305–321

    PubMed  Google Scholar 

  • Sternfeld MJ, Hinckley CA, Moore NJ, Pankratz MT, Hilde KL, Driscoll SP, Sharma K (2017) Speed and segmentation control mechanisms characterized in rhythmically-active circuits created from spinal neurons produced from genetically-tagged embryonic stem cells. Elife 6:e21540

    PubMed  PubMed Central  Google Scholar 

  • Terman D, Ahn S, Wang X, Just W (2008) Reducing neuronal networks to discrete dynamics. Phys D 237(3):324–338

    Google Scholar 

  • Vavoulis Dimitris V, Straub Volko A, Kemenes Ildikó, Kemenes György, Feng Jianfeng, Benjamin Paul R (2007) Dynamic control of a central pattern generator circuit: a computational model of the snail feeding network. Eur J Neurosci 25(9):2805–2818

    PubMed  Google Scholar 

  • Wang XJ, Rinzel J (1992) Alternating and synchronous rhythms in reciprocally inhibitory model neurons. Neural Comput 4(1):84–97

    Google Scholar 

  • Weimann JM, Marder E (1994) Switching neurons are integral members of multiple oscillatory networks. Curr Biol 4(10):896–902

    CAS  PubMed  Google Scholar 

  • Jeremy Wojcik, Justus Schwabedal, Robert Clewley, Shilnikov Andrey L (2014) Key bifurcations of bursting polyrhythms in 3-cell central pattern generators. PlOS One 9(4):e92918

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikolay I. Bazenkov.

Additional information

Communicated by Benjamin Lindner.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The research was partially supported by the Russian Foundation for Basic Research (projects 17-29-07029, 19-04-00628)

We thank Liudmila Zhilyakova, Sergei Kulivets, Dmitry Vorontsov and Ilya Chistopolsky for fruitful discussion and Prof. Dmitry Sakharov for the strong biological motivation. We also thank Dmitry Kuznetsov for language editing.

Appendix 1

Appendix 1

Table 1 Transition table for the oscillatory neuron
Table 2 Endogenous parameters of the triphasic generator
Table 3 Synaptic weights of the triphasic generator. Presynaptic neurons are listed in the rows, postsynaptic are in the columns
Table 4 Endogenous parameters of the modulated triphasic network
Table 5 Receptors (\(r_1\)) and the emission levels (\(d_1\)) of the modulatory transmitter
Table 6 Endogenous parameters of the reconfigurated circuit
Table 7 Synaptic weights of the reconfigurated circuit. Presynaptic neurons are in the rows, postsynaptic are in the columns

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bazenkov, N.I., Boldyshev, B.A., Dyakonova, V. et al. Simulating Small Neural Circuits with a Discrete Computational Model. Biol Cybern 114, 349–362 (2020). https://doi.org/10.1007/s00422-020-00826-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00422-020-00826-w

Keywords

Navigation