The case for emulating insect brains using anatomical “wiring diagrams” equipped with biophysical models of neuronal activity

Abstract

Developing whole-brain emulation (WBE) technology would provide immense benefits across neuroscience, biomedicine, artificial intelligence, and robotics. At this time, constructing a simulated human brain lacks feasibility due to limited experimental data and limited computational resources. However, I suggest that progress toward this goal might be accelerated by working toward an intermediate objective, namely insect brain emulation (IBE). More specifically, this would entail creating biologically realistic simulations of entire insect nervous systems along with more approximate simulations of non-neuronal insect physiology to make “virtual insects.” I argue that this could be realistically achievable within the next 20 years. I propose that developing emulations of insect brains will galvanize the global community of scientists, businesspeople, and policymakers toward pursuing the loftier goal of emulating the human brain. By demonstrating that WBE is possible via IBE, simulating mammalian brains and eventually the human brain may no longer be viewed as too radically ambitious to deserve substantial funding and resources. Furthermore, IBE will facilitate dramatic advances in cognitive neuroscience, artificial intelligence, and robotics through studies performed using virtual insects.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2

References

  1. Acciai L, Soda P, Iannello G (2016) Automated neuron tracing methods: an updated account. Neuroinformatics 14(4):353–367. https://doi.org/10.1007/s12021-016-9310-0

    Article  PubMed  Google Scholar 

  2. Akata Z, Perronnin F, Harchaoui Z, Schmid C (2014) Good practice in large-scale learning for image classification. IEEE Trans Pattern Anal Mach Intell 36(3):507–520. https://doi.org/10.1109/TPAMI.2013.146

    Article  PubMed  Google Scholar 

  3. Alivisatos AP, Chun M, Church GM, Greenspan RJ, Roukes ML, Yuste R (2012) The brain activity map project and the challenge of functional connectomics. Neuron 74(6):970–974. https://doi.org/10.1016/j.neuron.2012.06.006

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  4. Ardin P, Peng F, Mangan M, Lagogiannis K, Webb B (2016) Using an insect mushroom body circuit to encode route memory in complex natural environments. PLoS Comput Biol 12(2):e1004683. https://doi.org/10.1371/journal.pcbi.1004683

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  5. Bartol TM Jr, Bromer C, Kinney J, Chirillo MA, Bourne JN, Harris KM, Sejnowski TJ (2015) Nanoconnectomic upper bound on the variability of synaptic plasticity. ELife 4:e10778. https://doi.org/10.7554/eLife.10778

    Article  PubMed  PubMed Central  Google Scholar 

  6. Bloch G, Hazan E, Rafaeli A (2013) Circadian rhythms and endocrine functions in adult insects. J Insect Physiol 59(1):56–69. https://doi.org/10.1016/j.jinsphys.2012.10.012

    CAS  Article  PubMed  Google Scholar 

  7. Borst A (2007) Correlation versus gradient type motion detectors: the pros and cons. Philos Trans R Soc B Biol Sci 362(1479):369–374

    Article  Google Scholar 

  8. Brown AD, Chad JE, Kamarudin R, Dugan KJ, Furber SB (2018) SpiNNaker: event-based simulation—quantitative behavior. IEEE Trans Multi-Scale Comput Syst 4(3):450–462. https://doi.org/10.1109/TMSCS.2017.2748122

    Article  Google Scholar 

  9. Bullmore E, Sporns O (2009) Complex brain networks: graph theoretical analysis of structural and functional systems. Nat Rev Neurosci 10:186. https://doi.org/10.1038/nrn2575

    CAS  Article  PubMed  Google Scholar 

  10. Bürgers J, Pavlova I, Rodriguez-Gatica JE, Henneberger C, Oeller M, Ruland JA, Siebrasse JP, Kubitscheck U, Schwarz MK (2019) Light-sheet fluorescence expansion microscopy: fast mapping of neural circuits at super resolution. Neurophotonics 6(1):1–12. https://doi.org/10.1117/1.NPh.6.1.015005

    Article  Google Scholar 

  11. Chakraborty R, Vepuri V, Mhatre SD, Paddock BE, Miller S, Michelson SJ, Delvadia R, Desai A, Vinokur M, Marenda DR (2011) Characterization of a Drosophila Alzheimer’s disease model: pharmacological rescue of cognitive defects. PLoS ONE 6(6):e20799. https://doi.org/10.1371/journal.pone.0020799

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  12. Chen F, Tillberg PW, Boyden ES (2015) Expansion microscopy. Science 347(6221):543–548. https://doi.org/10.1126/science.1260088

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  13. Chen Y, Wang H, Helbling EF, Jafferis NT, Zufferey R, Ong A, Ma K, Gravish N, Chirarattananon P, Kovac M (2017) A biologically inspired, flapping-wing, hybrid aerial-aquatic microrobot. Sci Robot 2(11):eaao5619

    Article  Google Scholar 

  14. Clemens J, Hennig RM (2013) Computational principles underlying the recognition of acoustic signals in insects. J Comput Neurosci 35(1):75–85. https://doi.org/10.1007/s10827-013-0441-0

    Article  PubMed  Google Scholar 

  15. Clemens J, Wohlgemuth S, Ronacher B (2012) Nonlinear computations underlying temporal and population sparseness in the auditory system of the grasshopper. J Neurosci 32(29):10053–10062

    CAS  Article  Google Scholar 

  16. Denk W, Briggman KL, Helmstaedter M (2012) Structural neurobiology: missing link to a mechanistic understanding of neural computation. Nat Rev Neurosci 13:351. https://doi.org/10.1038/nrn3169

    CAS  Article  PubMed  Google Scholar 

  17. Destexhe A, Contreras D, Steriade M, Sejnowski TJ, Huguenard JR (1996) In vivo, in vitro, and computational analysis of dendritic calcium currents in thalamic reticular neurons. J Neurosci 16(1):169–185

    CAS  Article  Google Scholar 

  18. Donohue DE, Ascoli GA (2011) Automated reconstruction of neuronal morphology: an overview. Brain Res Rev 67(1):94–102. https://doi.org/10.1016/j.brainresrev.2010.11.003

    Article  PubMed  Google Scholar 

  19. Eichler K, Li F, Litwin-Kumar A, Park Y, Andrade I, Schneider-Mizell CM, Saumweber T, Huser A, Eschbach C, Gerber B, Fetter RD, Cardona A (2017) The complete connectome of a learning and memory centre in an insect brain. Nature 548:175. https://doi.org/10.1038/nature23455

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  20. Even N, Devaud J-M, Barron AB (2012) General stress responses in the honey bee. Insects 3(4):1271–1298. https://doi.org/10.3390/insects3041271

    Article  PubMed  PubMed Central  Google Scholar 

  21. Farooqui T (2012) Review of octopamine in insect nervous systems. Open Access Insect Physiol 4:1–17

    CAS  Article  Google Scholar 

  22. Fonseca MDC, Araujo BHS, Dias CSB, Archilha NL, Neto DPA, Cavalheiro E, Westfahl H, da Silva AJR, Franchini KG (2018) High-resolution synchrotron-based X-ray microtomography as a tool to unveil the three-dimensional neuronal architecture of the brain. Sci Rep 8(1):12074. https://doi.org/10.1038/s41598-018-30501-x

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  23. Franconville R, Beron C, Jayaraman V (2018) Building a functional connectome of the Drosophila central complex. ELife 7:e37017. https://doi.org/10.7554/eLife.37017

    Article  PubMed  PubMed Central  Google Scholar 

  24. Furber S, Temple S, Brown A (2006) High-performance computing for systems of spiking neurons. In: Proceedings of AISB’06: adaptation in artificial and biological systems. Bristol, United Kingdom, pp 29–36

  25. Gao R, Asano SM, Upadhyayula S, Pisarev I, Milkie DE, Liu T-L, Singh V, Graves A, Huynh GH, Zhao Y, Betzig E (2019) Cortical column and whole-brain imaging with molecular contrast and nanoscale resolution. Science 363(6424):eaau8302. https://doi.org/10.1126/science.aau8302

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  26. Gerstner W, Kistler WM, Naud R, Paninski L (2014) Neuronal dynamics: from single neurons to networks and models of cognition. Cambridge University Press, New York

    Google Scholar 

  27. Givon LE, Lazar AA (2016) Neurokernel: An open source platform for emulating the fruit fly brain. PLoS ONE 11(1):e0146581. https://doi.org/10.1371/journal.pone.0146581

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  28. Givon LE, Lazar AA, Yeh C-H (2017) Generating executable models of the Drosophila central complex. Front Behav Neurosci. https://doi.org/10.3389/fnbeh.2017.00102

    Article  PubMed  PubMed Central  Google Scholar 

  29. Gorostiza EA (2018) Does cognition have a role in plasticity of “innate behavior”? Front Psychol. https://doi.org/10.3389/fpsyg.2018.01502

    Article  PubMed  PubMed Central  Google Scholar 

  30. Günay C, Sieling FH, Dharmar L, Lin W-H, Wolfram V, Marley R, Baines RA, Prinz AA (2015) Distal spike initiation zone location estimation by morphological simulation of ionic current filtering demonstrated in a novel model of an identified Drosophila motoneuron. PLoS Comput Biol 11(5):e1004189. https://doi.org/10.1371/journal.pcbi.1004189

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  31. Handschuh S, Beisser CJ, Ruthensteiner B, Metscher BD (2017) Microscopic dual-energy CT (microDECT): a flexible tool for multichannel ex vivo 3D imaging of biological specimens. J Microsc 267(1):3–26. https://doi.org/10.1111/jmi.12543

    CAS  Article  PubMed  Google Scholar 

  32. Hauser F, Cazzamali G, Williamson M, Blenau W, Grimmelikhuijzen CJP (2006) A review of neurohormone GPCRs present in the fruitfly Drosophila melanogaster and the honey bee Apis mellifera. Prog Neurobiol 80(1):1–19. https://doi.org/10.1016/j.pneurobio.2006.07.005

    CAS  Article  PubMed  Google Scholar 

  33. Helmstaedter M, Briggman KL, Turaga SC, Jain V, Seung HS, Denk W (2013) Connectomic reconstruction of the inner plexiform layer in the mouse retina. Nature 500:168. https://doi.org/10.1038/nature12346

    CAS  Article  PubMed  Google Scholar 

  34. Herz AVM, Gollisch T, Machens CK, Jaeger D (2006) Modeling single-neuron dynamics and computations: a balance of detail and abstraction. Science 314(5796):80–85

    CAS  Article  Google Scholar 

  35. Hines J (2018) Stepping up to summit. Comput Sci Eng 20(2):78–82. https://doi.org/10.1109/MCSE.2018.021651341

    Article  Google Scholar 

  36. Holcman D, Yuste R (2015) The new nanophysiology: regulation of ionic flow in neuronal subcompartments. Nat Rev Neurosci 16:685. https://doi.org/10.1038/nrn4022

    CAS  Article  PubMed  Google Scholar 

  37. Huang Y-C, Wang C-T, Su T-S, Kao K-W, Lin Y-J, Chuang C-C, Chiang AS, Lo C-C (2019) A single-cell level and connectome-derived computational model of the Drosophila brain. Front Neuroinform. https://doi.org/10.3389/fninf.2018.00099

    Article  PubMed  PubMed Central  Google Scholar 

  38. Indiveri G, Linares-Barranco B, Hamilton T, van Schaik A, Etienne-Cummings R, Delbruck T, Liu SC, Dudek P, Häfliger P, Renaud S, Schemmel J, Boahen K (2011) Neuromorphic silicon neuron circuits. Front Neurosci. https://doi.org/10.3389/fnins.2011.00073

    Article  PubMed  PubMed Central  Google Scholar 

  39. Izhikevich EM (2004) Which model to use for cortical spiking neurons? IEEE Trans Neural Netw 15(5):1063–1070. https://doi.org/10.1109/TNN.2004.832719

    Article  PubMed  Google Scholar 

  40. Jimenez LO, Landgrebe DA (1998) Supervised classification in high-dimensional space: geometrical, statistical, and asymptotical properties of multivariate data. IEEE Trans Syst Man Cybern Part C (Appl Rev) 28(1):39–54. https://doi.org/10.1109/5326.661089

    Article  Google Scholar 

  41. Jordan J, Ippen T, Helias M, Kitayama I, Sato M, Igarashi J, Diesmann M, Kunkel S (2018) Extremely Scalable spiking neuronal network simulation code: from laptops to exascale computers. Front Neuroinform. https://doi.org/10.3389/fninf.2018.00002

    Article  PubMed  PubMed Central  Google Scholar 

  42. Kakaria KS, de Bivort BL (2017) Ring attractor dynamics emerge from a spiking model of the entire protocerebral bridge. Front Behav Neurosci. https://doi.org/10.3389/fnbeh.2017.00008

    Article  PubMed  PubMed Central  Google Scholar 

  43. Kleinfeld D, Bharioke A, Blinder P, Bock DD, Briggman KL, Chklovskii DB, Denk W, Helmstaedter M, Kaufhold JP, Lee WCA, Sakmann B (2011) Large-scale automated histology in the pursuit of connectomes. J Neurosci 31(45):16125–16138

    CAS  Article  Google Scholar 

  44. Koene RA (2012) Fundamentals of whole brain emulation: state, transition, and update representations. Int J Mach Conscious 4(1):5–21. https://doi.org/10.1142/S179384301240001X

    Article  Google Scholar 

  45. Koene RA (2013) Uploading to substrate-independent minds. In: Chella A (ed) The transhumanist reader: classical and contemporary essays on the science, technology, and philosophy of the human future. World Scientific, California, USA, pp 146–156

    Google Scholar 

  46. Lambrecht BGA, Horchler AD, Quinn RD (2005) A small, insect-inspired robot that runs and jumps. In: Proceedings of the 2005 IEEE international conference on robotics and automation. pp 1240–1245. https://doi.org/10.1109/ROBOT.2005.1570285

  47. Le Moël F, Stone T, Lihoreau M, Wystrach A, Webb B (2019) The central complex as a potential substrate for vector based navigation. Front Psychol. https://doi.org/10.3389/fpsyg.2019.00690

    Article  PubMed  PubMed Central  Google Scholar 

  48. Lee CT, Amaro R (2018) Exascale computing: a new dawn for computational biology. Comput Sci Eng 20(5):18–25. https://doi.org/10.1109/MCSE.2018.05329812

    Article  PubMed  PubMed Central  Google Scholar 

  49. Li PH, Lindsey LF, Januszewski M, Zheng Z, Bates AS, Taisz I, Jain V (2019) Automated reconstruction of a serial-section EM Drosophila brain with flood-filling networks and local realignment. BioRxiv. https://doi.org/10.1101/605634

    Article  Google Scholar 

  50. Lim J, McCarthy C, Shaw D, Cole L, Barnes N (2006). Insect inspired robots. In: Proceedings of the Australasian conference on robotics and automation (ACRA)

  51. Liu T-L, Upadhyayula S, Milkie DE, Singh V, Wang K, Swinburne IA, Betzig E (2018) Observing the cell in its native state: imaging subcellular dynamics in multicellular organisms. Science. https://doi.org/10.1126/science.aaq1392

    Article  PubMed  PubMed Central  Google Scholar 

  52. MaBouDi H, Shimazaki H, Giurfa M, Chittka L (2017) Olfactory learning without the mushroom bodies: spiking neural network models of the honeybee lateral antennal lobe tract reveal its capacities in odour memory tasks of varied complexities. PLoS Computational Biol 13(6):e1005551. https://doi.org/10.1371/journal.pcbi.1005551

    CAS  Article  Google Scholar 

  53. Marder E, Taylor AL (2011) Multiple models to capture the variability in biological neurons and networks. Nat Neurosci 14:133. https://doi.org/10.1038/nn.2735

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  54. Markram H (2006) The blue brain project. Nat Rev Neurosci 7:153. https://doi.org/10.1038/nrn1848

    CAS  Article  PubMed  Google Scholar 

  55. Markram H, Muller E, Ramaswamy S, Reimann MW, Abdellah M, Sanchez CA, Schürmann F (2015) reconstruction and simulation of neocortical microcircuitry. Cell 163(2):456–492. https://doi.org/10.1016/j.cell.2015.09.029

    CAS  Article  PubMed  Google Scholar 

  56. Marx V (2013) Brain mapping in high resolution. Nature 503:147. https://doi.org/10.1038/503147a

    CAS  Article  PubMed  Google Scholar 

  57. McDougal R, Hines M, Lytton W (2013) Reaction-diffusion in the NEURON simulator. Front Neuroinform 7:28. https://doi.org/10.3389/fninf.2013.00028

    Article  PubMed  PubMed Central  Google Scholar 

  58. McKenna NJ, O’Malley BW (2002) Combinatorial control of gene expression by nuclear receptors and coregulators. Cell 108(4):465–474. https://doi.org/10.1016/S0092-8674(02)00641-4

    CAS  Article  PubMed  Google Scholar 

  59. Menzel R (1999) Memory dynamics in the honeybee. J Comp Physiol A 185(4):323–340. https://doi.org/10.1007/s003590050392

    Article  Google Scholar 

  60. Menzel R (2012) The honeybee as a model for understanding the basis of cognition. Nat Rev Neurosci 13:758. https://doi.org/10.1038/nrn3357

    CAS  Article  PubMed  Google Scholar 

  61. Menzel R, Giurfa M (2001) Cognitive architecture of a mini-brain: the honeybee. Trends Cognit Sci 5(2):62–71. https://doi.org/10.1016/S1364-6613(00)01601-6

    CAS  Article  Google Scholar 

  62. Menzel R, Kirbach A, Haass W, Fischer B, Fuchs J, Koblofsky M, Greggers U (2011) A common frame of reference for learned and communicated vectors in honeybee navigation. Curr Biol 21(8):645–650. https://doi.org/10.1016/j.cub.2011.02.039

    CAS  Article  PubMed  Google Scholar 

  63. Mizutani R, Takeuchi A, Uesugi K, Takekoshi S, Osamura RY, Suzuki Y (2010) Microtomographic analysis of neuronal circuits of human brain. Cereb Cortex 20(7):1739–1748. https://doi.org/10.1093/cercor/bhp237

    Article  PubMed  Google Scholar 

  64. Mizutani R, Takeuchi A, Uesugi K, Takekoshi S, Nakamura N, Suzuki Y (2011) Building human brain network in 3D coefficient map determined by X-ray microtomography. AIP Conf Proc 1365(1):403–406. https://doi.org/10.1063/1.3625388

    Article  Google Scholar 

  65. Mizutani R, Saiga R, Takeuchi A, Uesugi K, Suzuki Y (2013) Three-dimensional network of Drosophila brain hemisphere. J Struct Biol 184(2):271–279. https://doi.org/10.1016/j.jsb.2013.08.012

    Article  PubMed  Google Scholar 

  66. Mizutani R, Saiga R, Ohtsuka M, Miura H, Hoshino M, Takeuchi A, Uesugi K (2016) Three-dimensional X-ray visualization of axonal tracts in mouse brain hemisphere. Sci Rep 6:35061. https://doi.org/10.1038/srep35061

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  67. Murakami TC, Mano T, Saikawa S, Horiguchi SA, Shigeta D, Baba K, Ueda HR (2018) A three-dimensional single-cell-resolution whole-brain atlas using CUBIC-X expansion microscopy and tissue clearing. Nat Neurosci 21(4):625–637. https://doi.org/10.1038/s41593-018-0109-1

    CAS  Article  PubMed  Google Scholar 

  68. Nguyen CT, Phung H, Hoang PT, Nguyen TD, Jung H, Choi HR (2018) Development of an insect-inspired hexapod robot actuated by soft actuators. J Mech Robot 10(6):61016–61018. https://doi.org/10.1115/1.4041258

    Article  Google Scholar 

  69. Oizumi M, Albantakis L, Tononi G (2014) From the phenomenology to the mechanisms of consciousness: integrated information theory 3.0. PLoS Comput Biol 10(5):e1003588. https://doi.org/10.1371/journal.pcbi.1003588

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  70. Orchard I, Lange AB (2012) Advances in insect physiology and endocrinology through genomics, peptidomics, and related technologies 1 Introduction to the virtual symposium on recent advances in understanding a variety of complex regulatory processes in insect physiology and endocrinol. Can J Zool 90(4):435–439. https://doi.org/10.1139/z2012-015

    CAS  Article  Google Scholar 

  71. Pacureanu A, Maniates-Selvin J, Kuan AT, Thomas LA, Chen C-L, Cloetens P, Lee W-CA (2019) Dense neuronal reconstruction through X-ray holographic nano-tomography. BioRxiv. https://doi.org/10.1101/653188

    Article  Google Scholar 

  72. Pahl M, Si A, Zhang S (2013) Numerical cognition in bees and other insects. Front Psychol. https://doi.org/10.3389/fpsyg.2013.00162

    Article  PubMed  PubMed Central  Google Scholar 

  73. Palyanov A, Khayrulin S, Larson SD, Dibert A (2012) Towards a virtual C. elegans: a framework for simulation and visualization of the neuromuscular system in a 3D physical environment. Silico Biol 11(3–4):137–147. https://doi.org/10.3233/ISB-2012-0445

    Article  Google Scholar 

  74. Park H-J, Friston K (2013) Structural and functional brain networks: from connections to cognition. Science 342(6158):1238411

    Article  Google Scholar 

  75. Petrović VM (2018) Artificial intelligence and virtual worlds—toward human-level AI agents. IEEE Access 6:39976–39988. https://doi.org/10.1109/ACCESS.2018.2855970

    Article  Google Scholar 

  76. Rabinovich MI, Varona P, Selverston AI, Abarbanel HDI (2006) Dynamical principles in neuroscience. Rev Mod Phys 78(4):1213–1265. https://doi.org/10.1103/RevModPhys.78.1213

    Article  Google Scholar 

  77. Reichardt W (1987) Evaluation of optical motion information by movement detectors. J Comp Physiol A 161(4):533–547. https://doi.org/10.1007/BF00603660

    CAS  Article  PubMed  Google Scholar 

  78. Reimann MW, Nolte M, Scolamiero M, Turner K, Perin R, Chindemi G, Markram H (2017) Cliques of neurons bound into cavities provide a missing link between structure and function. Front Comput Neurosci. https://doi.org/10.3389/fncom.2017.00048

    Article  PubMed  PubMed Central  Google Scholar 

  79. Rowat P (2007) Interspike interval statistics in the stochastic Hodgkin–Huxley model: coexistence of gamma frequency bursts and highly irregular firing. Neural Comput 19(5):1215–1250. https://doi.org/10.1162/neco.2007.19.5.1215

    Article  PubMed  Google Scholar 

  80. Seelig JD, Jayaraman V (2015) Neural dynamics for landmark orientation and angular path integration. Nature 521:186. https://doi.org/10.1038/nature14446

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  81. Service RF (2018) Design for U.S. exascale computer takes shape. Science 359(6376):617–618

    CAS  Article  Google Scholar 

  82. Silver D, Schrittwieser J, Simonyan K, Antonoglou I, Huang A, Guez A, Hassabis D (2017) Mastering the game of Go without human knowledge. Nature 550:354. https://doi.org/10.1038/nature24270

    CAS  Article  PubMed  Google Scholar 

  83. Sjöström PJ, Rancz EA, Roth A, Häusser M (2008) Dendritic excitability and synaptic plasticity. Physiol Rev 88(2):769–840. https://doi.org/10.1152/physrev.00016.2007

    CAS  Article  PubMed  Google Scholar 

  84. Takemura S, Bharioke A, Lu Z, Nern A, Vitaladevuni S, Rivlin PK, Chklovskii DB (2013) A visual motion detection circuit suggested by Drosophila connectomics. Nature 500:175. https://doi.org/10.1038/nature12450

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  85. Takemura S, Aso Y, Hige T, Wong A, Lu Z, Xu CS, Scheffer LK (2017a) A connectome of a learning and memory center in the adult Drosophila brain. ELife 6:e26975. https://doi.org/10.7554/eLife.26975

    Article  PubMed  PubMed Central  Google Scholar 

  86. Takemura S, Nern A, Chklovskii DB, Scheffer LK, Rubin GM, Meinertzhagen IA (2017b) The comprehensive connectome of a neural substrate for ‘ON’ motion detection in Drosophila. ELife 6:e24394. https://doi.org/10.7554/eLife.24394

    Article  PubMed  PubMed Central  Google Scholar 

  87. Tschopp FD, Reiser MB, Turaga SC (2018) A connectome based hexagonal lattice convolutional network model of the Drosophila visual system. ArXiv Preprint

  88. Ujfalussy BB, Makara JK, Lengyel M, Branco T (2018) Global and multiplexed dendritic computations under in vivo-like conditions. Neuron 100(3):579–592.e5. https://doi.org/10.1016/j.neuron.2018.08.032

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  89. Ukani NH, Yeh C-H, Tomkins A, Zhou Y, Florescu D, Ortiz CL, Lazar AA (2019) The fruit fly brain observatory: from structure to function. BioRxiv. https://doi.org/10.1101/580290

    Article  Google Scholar 

  90. van Albada SJ, Rowley AG, Senk J, Hopkins M, Schmidt M, Stokes AB, Furber SB (2018) Performance comparison of the digital neuromorphic hardware SpiNNaker and the neural network simulation software NEST for a full-scale cortical microcircuit model. Front Neurosci. https://doi.org/10.3389/fnins.2018.00291

    Article  PubMed  PubMed Central  Google Scholar 

  91. van der Voet M, Nijhof B, Oortveld MAW, Schenck A (2014) Drosophila models of early onset cognitive disorders and their clinical applications. Neurosci Biobehav Rev 46:326–342. https://doi.org/10.1016/j.neubiorev.2014.01.013

    Article  PubMed  Google Scholar 

  92. Wiederman ZMB, Cazzolato BS, Grainger S, O’Carroll DC, Wiederman SD (2017) An autonomous robot inspired by insect neurophysiology pursues moving features in natural environments. J Neural Eng 14(4):46030

    Article  Google Scholar 

  93. Yu K-H, Beam AL, Kohane IS (2018) Artificial intelligence in healthcare. Nat Biomed Eng 2(10):719–731. https://doi.org/10.1038/s41551-018-0305-z

    Article  PubMed  Google Scholar 

  94. Zheng Z, Lauritzen JS, Perlman E, Robinson CG, Nichols M, Milkie D, Bock DD (2018) A complete electron microscopy volume of the brain of adult Drosophila melanogaster. Cell 174(3):730–743.e22. https://doi.org/10.1016/j.cell.2018.06.019

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  95. Zjajo A, Hofmann J, Christiaanse GJ, van Eijk M, Smaragdos G, Strydis C, van Leuken R (2018) A real-time reconfigurable multichip architecture for large-scale biophysically accurate neuron simulation. IEEE Trans Biomed Circuits Syst 12(2):326–337. https://doi.org/10.1109/TBCAS.2017.2780287

    Article  PubMed  Google Scholar 

  96. Zou Y, Zhang W, Zhang Z (2016) Liftoff of an electromagnetically driven insect-inspired flapping-wing robot. IEEE Trans Robot 32(5):1285–1289. https://doi.org/10.1109/TRO.2016.2593449

    Article  Google Scholar 

Download references

Acknowledgements

The work was supported by the Arnold and Mabel Beckman Foundation under the Beckman Scholars Program. I thank Michael P. Saddoris for his constructive feedback on the manuscript.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Logan T. Collins.

Ethics declarations

Conflict of interest

The author declares no competing financial interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Communicated by Jan Benda.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Collins, L.T. The case for emulating insect brains using anatomical “wiring diagrams” equipped with biophysical models of neuronal activity. Biol Cybern 113, 465–474 (2019). https://doi.org/10.1007/s00422-019-00810-z

Download citation

Keywords

  • Connectomics
  • Hodgkin–Huxley models
  • Insects
  • Whole-brain emulation