Advertisement

Biological Cybernetics

, Volume 113, Issue 4, pp 397–421 | Cite as

Tutorial and simulations with ADAM: an adaptation and anticipation model of sensorimotor synchronization

  • Bronson HarryEmail author
  • Peter E. Keller
Original Article

Abstract

Interpersonal coordination of movements often involves precise synchronization of action timing, particularly in expert domains such as ensemble music performance. According to the adaptation and anticipation model (ADAM) of sensorimotor synchronization, precise yet flexible interpersonal coordination is supported by reactive error correction mechanisms and anticipatory mechanisms that exploit systematic patterns in stimulus timing to plan future actions. Here, we provide a tutorial introduction to the computational architecture of ADAM and present a series of single- and dual-virtual agent simulations that examine the model parameters that produce ideal synchronization performance in different tempo conditions. In the single-agent simulations, a virtual agent synchronized responses to steady tempo sequence or a sequence containing gradual tempo changes. Parameters controlling basic reactive error (phase) correction were sufficient for producing ideal synchronization performance at the steady tempo, whereas parameters controlling anticipatory mechanisms were necessary for ideal performance with a tempo-changing sequence. In the dual-agent simulations, two interacting virtual agents produced temporal sequences from either congruent or incongruent internal performance templates specifying a steady tempo or tempo changes. Ideal performance was achieved with reactive error correction alone when both agents implemented the same performance template (either steady tempo or tempo change). In contrast, anticipatory mechanisms played a key role when one agent implemented a steady tempo template and the other agent implemented a tempo change template. These findings have implications for understanding the interplay between reactive and anticipatory mechanisms when agents possess compatible versus incompatible representations of task goals during human–human and human–machine interaction.

Keywords

Sensorimotor synchronization Interpersonal coordination Cognitive modeling Action timing Temporal prediction 

Notes

Acknowledgements

This work is supported by ARC Future Fellowship Grant FT140101162.

References

  1. Bavassi ML, Tagliazucchi E, Laje R (2013) Small perturbations in a finger-tapping task reveal inherent nonlinearities of the underlying error correction mechanism. Hum Mov Sci 32(1):21–47.  https://doi.org/10.1016/j.humov.2012.06.002 CrossRefPubMedGoogle Scholar
  2. Blakemore S-J, Frith C (2005) The role of motor contagion in the prediction of action. Neuropsychologia 43(2):260–267.  https://doi.org/10.1016/j.neuropsychologia.2004.11.012 CrossRefPubMedGoogle Scholar
  3. Colley ID, Keller P, Halpern AR (2017) Working memory and auditory imagery predict sensorimotor synchronization with expressively timed music. Q J Exp Psychol.  https://doi.org/10.1080/17470218.2017.1366531 CrossRefGoogle Scholar
  4. Dalla Bella S, Benoit C-E, Farrugia N, Keller PE, Obrig H, Mainka S, Kotz SA (2017) Gait improvement via rhythmic stimulation in Parkinson’s disease is linked to rhythmic skills. Sci Rep.  https://doi.org/10.1038/srep42005 CrossRefPubMedPubMedCentralGoogle Scholar
  5. Dumas G, de Guzman GC, Tognoli E, Kelso JAS (2014) The human dynamic clamp as a paradigm for social interaction. Proc Natl Acad Sci 111(35):E3726–E3734.  https://doi.org/10.1073/pnas.1407486111 CrossRefPubMedGoogle Scholar
  6. Edwards AM, Guy JH, Hettinga FJ (2016) Oxford and Cambridge boat race: performance, pacing and tactics between 1890 and 2014. Sports Med 46(10):1553–1562.  https://doi.org/10.1007/s40279-016-0524-y CrossRefPubMedGoogle Scholar
  7. Fairhurst MT, Janata P, Keller PE (2013) Being and feeling in sync with an adaptive virtual partner: brain mechanisms underlying dynamic cooperativity. Cereb Cortex 23(11):2592–2600.  https://doi.org/10.1093/cercor/bhs243 CrossRefPubMedGoogle Scholar
  8. Fairhurst MT, Janata P, Keller PE (2014) Leading the follower: an fMRI investigation of dynamic cooperativity and leader–follower strategies in synchronization with an adaptive virtual partner. NeuroImage 84:688–697.  https://doi.org/10.1016/j.neuroimage.2013.09.027 CrossRefPubMedGoogle Scholar
  9. Fink PW, Foo P, Jirsa VK, Kelso JAS (2000) Local and global stabilization of coordination by sensory information. Exp Brain Res 134(1):9–20.  https://doi.org/10.1007/s002210000439 CrossRefPubMedGoogle Scholar
  10. Gabrielsson A (2003) Music performance research at the millennium. Psychol Music 31(3):221–272.  https://doi.org/10.1177/03057356030313002 CrossRefGoogle Scholar
  11. Gambi C, Pickering MJ (2011) A cognitive architecture for the coordination of utterances. Front Psychol.  https://doi.org/10.3389/fpsyg.2011.00275 CrossRefPubMedPubMedCentralGoogle Scholar
  12. Hary D, Moore GP (1987) On the performance and stability of human metronome-synchronization strategies. Br J Math Stat Psychol 40:109–124CrossRefGoogle Scholar
  13. Hove MJ, Suzuki K, Uchitomi H, Orimo S, Miyake Y (2012) Interactive rhythmic auditory stimulation reinstates natural 1/f timing in gait of Parkinson’s patients. PLoS ONE 7(3):e32600.  https://doi.org/10.1371/journal.pone.0032600 CrossRefPubMedPubMedCentralGoogle Scholar
  14. Iqbal T, Rack S, Riek LD (2016) Movement coordination in human-robot teams: a dynamical systems approach. IEEE Trans Rob 32(4):909–919.  https://doi.org/10.1109/TRO.2016.2570240 CrossRefGoogle Scholar
  15. Jacoby N, Repp BH (2012) A general linear framework for the comparison and evaluation of models of sensorimotor synchronization. Biol Cybern 106(3):135–154.  https://doi.org/10.1007/s00422-012-0482-x CrossRefPubMedGoogle Scholar
  16. Jacoby N, Tishby N, Repp BH, Ahissar M, Keller PE (2015) Parameter estimation of linear sensorimotor synchronization models: phase correction, period correction, and ensemble synchronization. Timing Time Percept 3(1–2):52–87.  https://doi.org/10.1163/22134468-00002048 CrossRefGoogle Scholar
  17. Keller PE (2008) Joint action in music performance. Enacting intersubjectivity: a cognitive and social perspective on the study of interactions. IOS Press, Amsterdam, pp 205–221Google Scholar
  18. Keller PE (2013). Musical ensemble performance: a theoretical framework and empirical findings on interpersonal coordination. In: Proceedings of the 4th international symposium on performance science (ISPS 2013), 28–31 August 2013, Vienna, pp 271–285Google Scholar
  19. Keller PE, Novembre G, Hove MJ (2014) Rhythm in joint action: psychological and neurophysiological mechanisms for real-time interpersonal coordination. Philos Trans R Soc B Biol Sci 369(1658):20130394.  https://doi.org/10.1098/rstb.2013.0394 CrossRefGoogle Scholar
  20. Keller PE, Novembre G, Loehr J (2016) Musical ensemble performance: representing self, other, and joint action outcomes. In: Shared representations: sensorimotor foundations of social life, pp 280–310. Retrieved from http://researchdirect.westernsydney.edu.au/islandora/object/uws%3A39000/. Accessed 20 Oct 2017
  21. Kelso JAS, de Guzman GC, Reveley C, Tognoli E (2009) Virtual partner interaction (VPI): exploring novel behaviors via coordination dynamics. PLoS ONE 4(6):e5749.  https://doi.org/10.1371/journal.pone.0005749 CrossRefPubMedPubMedCentralGoogle Scholar
  22. Knoblich G, Jordan JS (2003) Action coordination in groups and individuals: learning anticipatory control. J Exp Psychol Learn Mem Cogn 29(5):1006–1016.  https://doi.org/10.1037/0278-7393.29.5.1006 CrossRefPubMedGoogle Scholar
  23. Konvalinka I, Vuust P, Roepstorff A, Frith CD (2010) Follow you, follow me: continuous mutual prediction and adaptation in joint tapping. Q J Ex Psychol 63(11):2220–2230.  https://doi.org/10.1080/17470218.2010.497843 CrossRefGoogle Scholar
  24. Large EW, Herrera JA, Velasco MJ (2015) Neural networks for beat perception in musical rhythm. Front Syst Neurosci.  https://doi.org/10.3389/fnsys.2015.00159 CrossRefPubMedPubMedCentralGoogle Scholar
  25. Loehr JD, Large EW, Palmer C (2011) Temporal coordination and adaptation to rate change in music performance. J Exp Psychol Hum Percept Perform 37(4):1292–1309.  https://doi.org/10.1037/a0023102 CrossRefPubMedGoogle Scholar
  26. MacRitchie J, Herff SA, Procopio A, Keller PE (2017a) Negotiating between individual and joint goals in ensemble musical performance. Q J Ex Psychol.  https://doi.org/10.1080/17470218.2017.1339098 CrossRefGoogle Scholar
  27. MacRitchie J, Varlet M, Keller PE (2017). Embodied expression through entrainment and co-representation in musical ensemble performance. In: The Routledge companion to embodied music interaction. Routledge, London.  https://doi.org/10.4324/9781315621364.ch16
  28. Mates J (1994a) A model of synchronization of motor acts to a stimulus sequence. I. Timing and error corrections. Biol Cybern 70(5):463–473CrossRefGoogle Scholar
  29. Mates J (1994b) A model of synchronization of motor acts to a stimulus sequence. II. Stability analysis, error estimation and simulations. Biol Cybern 70(5):475–484CrossRefGoogle Scholar
  30. McAuley JD, Jones MR (2003) Modeling effects of rhythmic context on perceived duration: a comparison of interval and entrainment approaches to short-interval timing. J Exp Psychol Hum Percept Perform 29(6):1102–1125.  https://doi.org/10.1037/0096-1523.29.6.1102 CrossRefPubMedGoogle Scholar
  31. Michon JA (1967) Timing in temporal tracking. Institute for Perception RVO-TNO, SoesterbergGoogle Scholar
  32. Mills PF, van der Steen MC, Schultz BG, Keller PE (2015) Individual differences in temporal anticipation and adaptation during sensorimotor synchronization. Timing Time Percept.  https://doi.org/10.1163/22134468-03002040 CrossRefGoogle Scholar
  33. Miyata K, Varlet M, Miura A, Kudo K, Keller PE (2018) Interpersonal visual interaction induces local and global stabilisation of rhythmic coordination. Neurosci Lett.  https://doi.org/10.1016/j.neulet.2018.07.024 CrossRefPubMedGoogle Scholar
  34. Néda Z, Ravasz E, Brechet Y, Vicsek T, Barabási A-L (2000) Self-organizing processes: the sound of many hands clapping. Nature 403(6772):849–850.  https://doi.org/10.1038/35002660 CrossRefPubMedGoogle Scholar
  35. Novembre G, Ticini LF, Schütz-Bosbach S, Keller PE (2014) Motor simulation and the coordination of self and other in real-time joint action. Soc Cogn Affect Neurosci 9(8):1062–1068.  https://doi.org/10.1093/scan/nst086 CrossRefPubMedGoogle Scholar
  36. Novembre G, Varlet M, Muawiyath S, Stevens CJ, Keller PE (2015) The E-music box: an empirical method for exploring the universal capacity for musical production and for social interaction through music. R Soc Open Sci.  https://doi.org/10.1098/rsos.150286 CrossRefPubMedPubMedCentralGoogle Scholar
  37. Novembre G, Sammler D, Keller PE (2016) Neural alpha oscillations index the balance between self-other integration and segregation in real-time joint action. Neuropsychologia 89:414–425.  https://doi.org/10.1016/j.neuropsychologia.2016.07.027 CrossRefPubMedGoogle Scholar
  38. Nowicki L, Prinz W, Grosjean M, Repp BH, Keller PE (2013) Mutual adaptive timing in interpersonal action coordination. Psychomusicol Music Mind Brain 23(1):6–20.  https://doi.org/10.1037/a0032039 CrossRefGoogle Scholar
  39. Pecenka N, Keller PE (2009) Auditory pitch imagery and its relationship to musical synchronization. Ann N Y Acad Sci 1169(1):282–286.  https://doi.org/10.1111/j.1749-6632.2009.04785.x CrossRefPubMedGoogle Scholar
  40. Pecenka N, Keller PE (2011) The role of temporal prediction abilities in interpersonal sensorimotor synchronization. Exp Brain Res 211(3–4):505–515.  https://doi.org/10.1007/s00221-011-2616-0 CrossRefPubMedGoogle Scholar
  41. Pecenka N, Engel A, Keller PE (2013) Neural correlates of auditory temporal predictions during sensorimotor synchronization. Front Hum Neurosci 7:380.  https://doi.org/10.3389/fnhum.2013.00380 CrossRefPubMedPubMedCentralGoogle Scholar
  42. Phillips-Silver J, Aktipis CA, Bryant GA (2010) The ecology of entrainment: foundations of coordinated rhythmic movement. Music Percept Interdiscip J 28(1):3–14.  https://doi.org/10.1525/mp.2010.28.1.3 CrossRefGoogle Scholar
  43. Pressing J (1999) The referential dynamics of cognition and action. Psychol Rev 106(4):714–747.  https://doi.org/10.1037/0033-295X.106.4.714 CrossRefGoogle Scholar
  44. Ragert M, Schroeder T, Keller PE (2013) Knowing too little or too much: the effects of familiarity with a co-performer’s part on interpersonal coordination in musical ensembles. Front Psychol 4:368.  https://doi.org/10.3389/fpsyg.2013.00368 CrossRefPubMedPubMedCentralGoogle Scholar
  45. Rankin SK, Large EW, Fink PW (2009) Fractal tempo fluctuation and pulse prediction. Music Percept Interdiscip J 26(5):401–413.  https://doi.org/10.1525/mp.2009.26.5.401 CrossRefGoogle Scholar
  46. Repp BH (2002) The embodiment of musical structure: effects of musical context on sensorimotor synchronization with complex timing patterns. In: Prinz W, Hommel B (eds) Common mechanisms in perception and action: attention and performance XIX. Oxford University Press, Oxford, pp 245–265Google Scholar
  47. Repp BH (2005) Sensorimotor synchronization: a review of the tapping literature. Psychon Bull Rev 12(6):969–992.  https://doi.org/10.3758/BF03206433 CrossRefPubMedGoogle Scholar
  48. Repp BH, Keller PE (2004) Adaptation to tempo changes in sensorimotor synchronization: effects of intention, attention, and awareness. Q J Ex Psychol Section A 57(3):499–521.  https://doi.org/10.1080/02724980343000369 CrossRefGoogle Scholar
  49. Repp BH, Keller PE (2008) Sensorimotor synchronization with adaptively timed sequences. Hum Mov Sci 27(3):423–456.  https://doi.org/10.1016/j.humov.2008.02.016 CrossRefPubMedGoogle Scholar
  50. Repp BH, Keller PE (2010) Self versus other in piano performance: detectability of timing perturbations depends on personal playing style. Exp Brain Res 202(1):101–110.  https://doi.org/10.1007/s00221-009-2115-8 CrossRefPubMedGoogle Scholar
  51. Repp BH, Su Y-H (2013) Sensorimotor synchronization: a review of recent research (2006–2012). Psychon Bull Rev 20(3):403–452.  https://doi.org/10.3758/s13423-012-0371-2 CrossRefPubMedGoogle Scholar
  52. Repp BH, Keller PE, Jacoby N (2012) Quantifying phase correction in sensorimotor synchronization: empirical comparison of three paradigms. Acta Physiol (Oxf) 139(2):281–290.  https://doi.org/10.1016/j.actpsy.2011.11.002 CrossRefGoogle Scholar
  53. Sänger J, Lindenberger U, Müller V (2011) Interactive brains, social minds. Commun Integr Biol 4(6):655–663.  https://doi.org/10.4161/cib.17934 CrossRefPubMedPubMedCentralGoogle Scholar
  54. Schiavio A, Høffding S (2015) Playing together without communicating? a pre-reflective and enactive account of joint musical performance. Music Sci 19(4):366–388.  https://doi.org/10.1177/1029864915593333 CrossRefGoogle Scholar
  55. Schulze H-H, Cordes A, Vorberg D (2005) Keeping synchrony while tempo changes: accelerando and ritardando. Music Percept Interdiscip J 22(3):461–477.  https://doi.org/10.1525/mp.2005.22.3.461 CrossRefGoogle Scholar
  56. Sebanz N, Knoblich G (2009) Prediction in joint action: what, when, and where. Top Cogn Sci 1(2):353–367.  https://doi.org/10.1111/j.1756-8765.2009.01024.x CrossRefPubMedGoogle Scholar
  57. Skewes JC, Skewes L, Michael J, Konvalinka I (2015) Synchronised and complementary coordination mechanisms in an asymmetric joint aiming task. Exp Brain Res 233(2):551–565.  https://doi.org/10.1007/s00221-014-4135-2 CrossRefPubMedGoogle Scholar
  58. Thaut MH, McIntosh GC, Hoemberg V (2015) Neurobiological foundations of neurologic music therapy: rhythmic entrainment and the motor system. Front Psychol 5:1.  https://doi.org/10.3389/fpsyg.2014.01185 CrossRefGoogle Scholar
  59. Tognoli E, Kelso JAS (2014) The metastable brain. Neuron 81(1):35–48.  https://doi.org/10.1016/j.neuron.2013.12.022 CrossRefPubMedPubMedCentralGoogle Scholar
  60. Torre K, Balasubramaniam R (2009) Two different processes for sensorimotor synchronization in continuous and discontinuous rhythmic movements. Exp Brain Res 199(2):157–166.  https://doi.org/10.1007/s00221-009-1991-2 CrossRefPubMedGoogle Scholar
  61. van der Steen MC, Keller PE (2013) The adaptation and anticipation model (ADAM) of sensorimotor synchronization. Front Hum Neurosci 7:253.  https://doi.org/10.3389/fnhum.2013.00253 CrossRefPubMedPubMedCentralGoogle Scholar
  62. van der Steen MC, Jacoby N, Fairhurst MT, Keller PE (2015a) Sensorimotor synchronization with tempo-changing auditory sequences: modeling temporal adaptation and anticipation. Brain Res 1626:66–87.  https://doi.org/10.1016/j.brainres.2015.01.053 CrossRefPubMedGoogle Scholar
  63. van der Steen MC, Schwartze M, Kotz SA, Keller PE (2015b) Modeling effects of cerebellar and basal ganglia lesions on adaptation and anticipation during sensorimotor synchronization. Ann N Y Acad Sci 1337(1):101–110.  https://doi.org/10.1111/nyas.12628 CrossRefPubMedGoogle Scholar
  64. Vorberg D (2005, July) Synchronization in duet performance: testing the two-person phase error correction model. Presented at the 10th rhythm perception and production workshop, Alden BiesenGoogle Scholar
  65. Vorberg D, Hambuch R (1978) On the temporal control of rhythmic performance. In: Requin J (ed) Attention and performance, vol VII. Erlbaum, Hillsdale NJ, pp 535–555Google Scholar
  66. Vorberg D, Schulze H-H (2002) Linear phase-correction in synchronization: predictions, parameter estimation, and simulations. J Math Psychol 46(1):56–87.  https://doi.org/10.1006/jmps.2001.1375 CrossRefGoogle Scholar
  67. Vorberg D, Wing A (1996) Modeling variability and dependence in timing. In: Heuer H, Keele S (eds) Handbook of perception and action. Academic, London, pp 181–262Google Scholar
  68. Wing AM (1993) The uncertain motor system: perspectives on the variability of movement. In: Meyer DE, Kornblum S (eds) Attention and performance XIV: synergies in experimental psychology, artificial intelligence, and cognitive neuroscience. The MIT Press, Cambridge, pp 709–744Google Scholar
  69. Wing AM, Kristofferson AB (1973) Response delays and the timing of discrete motor responses. Percept Psychophys 14(1):5–12.  https://doi.org/10.3758/BF03198607 CrossRefGoogle Scholar
  70. Wing AM, Endo S, Bradbury A, Vorberg D (2014) Optimal feedback correction in string quartet synchronization. J R Soc Interface 11(93):20131125.  https://doi.org/10.1098/rsif.2013.1125 CrossRefPubMedPubMedCentralGoogle Scholar
  71. Wolpert DM, Kawato M (1998) Multiple paired forward and inverse models for motor control. Neural Netw 11(7):1317–1329.  https://doi.org/10.1016/S0893-6080(98)00066-5 CrossRefPubMedGoogle Scholar
  72. Wolpert DM, Doya K, Kawato M (2003) A unifying computational framework for motor control and social interaction. Philos Trans R Soc B Biol Sci 358(1431):593–602.  https://doi.org/10.1098/rstb.2002.1238 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Music, Cognition and Action Group, The MARCS Institute for Brain, Behaviour and DevelopmentWestern Sydney UniversityPenrithAustralia

Personalised recommendations