Skip to main content

Optimizing stimulus waveforms for electroceuticals

Abstract

There has been a growing interest in the use of electrical stimulation as a therapy across diverse medical conditions. Most electroceutical devices use simple waveforms, for example sinusoidal or rectangular biphasic pulses. Clinicians empirically tune the waveform parameters (e.g. amplitude, frequency) without altering the fundamental shape of the stimulus. In this article, we review computational strategies that have been used to optimize the shape of stimulus waveforms in order to improve clinical outcomes, and we discuss potential directions for future exploration.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Adapted from Chang and Paydarfar (2018) with permission

References

  1. Barto AG, Sutton RS (2017) Reinforcement learning: an introduction. MIT Press, Cambridge

    Google Scholar 

  2. Bellman R (1961) Adaptive control processes: a guided tour. Princeton University Press, Princeton

    Book  Google Scholar 

  3. Benabid AL, Chabardes S, Mitrofanis J, Pollak P (2009) Deep brain stimulation of the subthalamic nucleus for the treatment of Parkinson’s disease. Lancet Neurol 8(1):67–81

    PubMed  Article  Google Scholar 

  4. Bloch-Salisbury E, Indic P, Bednarek F, Paydarfar D (2009) Stabilizing immature breathing patterns of preterm infants using stochastic mechanosensory stimulation. J Appl Physiol 107(4):1017–27

    PubMed  PubMed Central  Article  Google Scholar 

  5. Bonaz BL, Bernstein CN (2013) Brain–gut interactions in inflammatory bowel disease. Gastroenterology 144(1):36–49

    PubMed  Article  Google Scholar 

  6. Boon P, Vonck K, De Herdt V, Van Dycke A, Goethals M, Goossens L, Van Zandijcke MV, De Smedt T, Dewaele I, Achten R, Wadman W, Dewaele F, Caemaert J, Van Roost D (2007) Deep brain stimulation in patients with refractory temporal lobe epilepsy. Epilepsia 48(8):1551–1560

    PubMed  Article  Google Scholar 

  7. Bryson AE, Ho YC (1975) Applied optimal control: optimization, estimation and control. CRC Press, Boca Raton

    Google Scholar 

  8. Cameron T (2004) Safety and efficacy of spinal cord stimulation for the treatment of chronic pain: a 20-year literature review. J Neurosurg Spine 100(3):254–267

    Article  Google Scholar 

  9. Cassar IR, Titus ND, Grill WM (2017) An improved genetic algorithm for designing optimal temporal patterns of neural stimulation. J Neural Eng 14(6):066013

    PubMed  PubMed Central  Article  Google Scholar 

  10. Chang J, Paydarfar D (2014) Switching neuronal state: optimal stimuli revealed using a stochastically-seeded gradient algorithm. J Comput Neurosci 37(3):569–582

    PubMed  PubMed Central  Article  Google Scholar 

  11. Chang J, Paydarfar D (2015) Optimal stimulus waveforms for eliciting a spike: How close is the spike-triggered average? In: 2015 7th international IEEE/EMBS conference on neural engineering (NER), pp 414–417

  12. Chang J, Paydarfar D (2018) Evolution of extrema features reveals optimal stimuli for biological state transitions. Sci Rep 8:3403

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  13. Clay J, Forger D, Paydarfar D (2012) Ionic mechanism underlying optimal stimuli for neuronal excitation: role of Na+ channel inactivation. PLoS ONE 7(9):e45983

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  14. Dettling M, Lisanby SH (2008) Electroconvulsive therapy for depression. New Engl J Med 358(6):645–646

    CAS  PubMed  Article  Google Scholar 

  15. Fain ES, Sweeney MB, Franz MR (1989) Improved internal defibrillation efficacy with a biphasic waveform. Am Heart J 117(2):358–364

    CAS  PubMed  Article  Google Scholar 

  16. Fishler MG (2000) Theoretical predictions of the optimal monophasic and biphasic defibrillation waveshapes. IEEE Trans Biomed Eng 47(1):59–67

    CAS  PubMed  Article  Google Scholar 

  17. Forger D (2017) Biological clocks, rhythms, and oscillations: the theory of biological timekeeping. MIT Press, Cambridge

    Google Scholar 

  18. Forger DB, Paydarfar D (2004) Starting, stopping, and resetting biological oscillators: in search of optimum perturbations. J Theor Biol 230(4):521–532

    PubMed  Article  Google Scholar 

  19. Forger DB, Paydarfar D, Clay JR (2011) Optimal stimulus shapes for neuronal excitation. PLoS Comput Biol 7(7):e1002089

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  20. Foutz TJ, McIntyre CC (2010) Evaluation of novel stimulus waveforms for deep brain stimulation. J Neural Eng 7(6):066008

    PubMed  PubMed Central  Article  Google Scholar 

  21. Garratt A (1858) Galvanism for counteracting pain in the extraction of teeth. Boston Med Surg J 59:32–34

    Article  Google Scholar 

  22. Gelfand I, Fomin S, Silverman R (2000) Calculus of variations. Courier Dover Publications, Englewood Cliffs

    Google Scholar 

  23. Golfetto WA, da Silva Fernandes S (2012) A review of gradient algorithms for numerical computation of optimal trajectories. J Aerosp Technol Manag 4(2):131–143

    Article  Google Scholar 

  24. Grill W (2015) Model-based analysis and design of waveforms for efficient neural stimulation. Prog Brain Res 222:147–162

    PubMed  PubMed Central  Article  Google Scholar 

  25. Gurvich N, Yuniev G (1947) Restoration of heart rhythm during fibrillation by a condenser discharge. Am Rev Sov Med 4(3):252–256

    CAS  PubMed  Google Scholar 

  26. Hodgkin A, Huxley A (1952) A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol 52(4):500–544

    Article  Google Scholar 

  27. Indic P, Gurdziel K, Kronauer RE, Klerman EB (2006) Development of a two-dimension manifold to represent high dimension mathematical models of the intracellular mammalian circadian clock. J Biol Rhythm 21(3):222–232

    Article  Google Scholar 

  28. Izhikevich E (2003) Simple model of spiking neurons. IEEE Trans Neural Netw 14(6):1569–1572

    CAS  PubMed  Article  Google Scholar 

  29. Jimenez F, Velasco F, Salin-Pascual R, Hernandez JA, Velasco M, Criales JL, Nicolini H (2005) A patient with a resistant major depression disorder treated with deep brain stimulation in the inferior thalamic peduncle. Neurosurgery 57(3):585–592

    PubMed  Article  Google Scholar 

  30. Kane K, Taub A (1975) A history of local electrical analgesia. Pain 1(2):125–138

    CAS  PubMed  Article  Google Scholar 

  31. Kelley HJ (1962) Methods of gradients. In: Leitmann G (ed) Optimization techniques, chap 6, 5th edn. Academic Press, Inc, New York, pp 206–254

    Google Scholar 

  32. Kodoth V, Castro NC, Glover BM, Anderson JM, Escalona OJ, Lau E, Manoharan G (2011) Waveform optimization for internal cardioversion of atrial fibrillation. J Electrocardiol 44(6):689–693

    PubMed  Article  Google Scholar 

  33. Kouwenhoven WB (1969) The development of the defibrillator. Ann Intern Med 71(3):449–458

    CAS  PubMed  Article  Google Scholar 

  34. Kuncel AM, Grill WM (2004) Selection of stimulus parameters for deep brain stimulation. Clin Neurophysiol 115(11):2431–2441

    PubMed  Article  Google Scholar 

  35. Li W, Ripplinger CM, Lou Q, Efimov IR (2009) Multiple monophasic shocks improve electrotherapy of ventricular tachycardia in a rabbit model of chronic infarction. Heart Rhythm 6(7):1020–1027

    PubMed  PubMed Central  Article  Google Scholar 

  36. Lown B (1967) Electrical reversion of cardiac arrhythmias. Br Heart J 29(4):469–89

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  37. Lown B, Neuman J, Amarasingham R, Berkovits B et al (1962) Comparison of alternating current with direct electroshock across the closed chest. Am J Cardiol 10(2):223–233

    CAS  PubMed  Article  Google Scholar 

  38. Lozano AM, Mayberg HS, Giacobbe P, Hamani C, Craddock RC, Kennedy SH (2008) Subcallosal cingulate gyrus deep brain stimulation for treatment-resistant depression. Biol Psychiatry 64(6):461–467

    PubMed  Article  Google Scholar 

  39. Luther S, Fenton FH, Kornreich BG, Squires A, Bittihn P, Hornung D, Zabel M, Flanders J, Gladuli A, Campoy L, Cherry EM, Luther G, Hasenfuss G, Krinsky VI, Pumir A, Gilmour RF Jr, Bodenschatz E (2011) Low-energy control of electrical turbulence in the heart. Nature 475(7355):235–239

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  40. Malkin RA, Jackson SR, Nguyen J, Yang Z, Guan D (2006) Experimental verification of theoretical predictions concerning the optimum defibrillation waveform. IEEE Trans Biomed Eng 53(8):1492–1498

    PubMed  Article  Google Scholar 

  41. Meregnani J, Clarençon D, Vivier M, Peinnequin A, Mouret C, Sinniger V, Picq C, Job A, Canini F, Jacquier-Sarlin M, Bonaz B (2011) Anti-inflammatory effect of vagus nerve stimulation in a rat model of inflammatory bowel disease. Auton Neurosci Basic Clin 160(1–2):82–89

    CAS  Article  Google Scholar 

  42. Merrill DR, Bikson M, Jefferys JG (2005) Electrical stimulation of excitable tissue: design of efficacious and safe protocols. J Neurosci Methods 141(2):171–198

    PubMed  Article  Google Scholar 

  43. Mitchell M, Holland JH, Forrest S (1994) When will a genetic algorithm outperform hill climbing. Adv Neural Inf Process Syst 6:51–58

    Google Scholar 

  44. Moehlis J, Shea-Brown E, Rabitz H (2006) Optimal inputs for phase models of spiking neurons. J Comput Nonlinear Dyn 1(4):358

    Article  Google Scholar 

  45. Nabi A, Moehlis J (2012) Time optimal control of spiking neurons. J Math Biol 64(6):981–1004

    PubMed  Article  Google Scholar 

  46. Oakley JC, Prager JP (2002) Spinal cord stimulation: mechanisms of action. Spine 27(22):2574–2583

    PubMed  Article  Google Scholar 

  47. Offner F (1946) Stimulation with minimum power. J Neurophysiol 9(5):387–390

    CAS  PubMed  Article  Google Scholar 

  48. Park M, Pillow J (2012) Bayesian active learning with localized priors for fast receptive field characterization. Adv Neural Inf Process Syst 25(25):2357–2365

    Google Scholar 

  49. Park M, Nassar M, Vikalo H (2013) Bayesian active learning for drug combinations. IEEE Trans Biomed Eng 60(11):3248–3255

    PubMed  Article  Google Scholar 

  50. Paydarfar D, Forger DB, Clay JR (2006) Noisy inputs and the induction of on–off switching behavior in a neuronal pacemaker. J Neurophysiol 96(6):3338–3348

    PubMed  Article  Google Scholar 

  51. Pontryagin LS, Boltyanskii V, Gamkrelidze R, Mishchenko E (1962) Mathematical theory of optimal processes. Wiley, New York

    Google Scholar 

  52. Prugel-Bennett A (2004) When a genetic algorithm outperforms hill-climbing. Theor Comput Sci 320:135–153

    Article  Google Scholar 

  53. Rao AV (2009) A survey of numerical methods for optimal control. Adv Astronaut Sci 135(1):497–528

    Google Scholar 

  54. Ross P, Corne D (1995) Comparing genetic algorithms, simulated annealing, and stochastic hillclimbing on timetabling problems. In: AISB workshop on evolutionary computing, pp 94–102

  55. Sengupta B, Stemmler MB (2014) Power consumption during neuronal computation. Proc IEEE 102(5):738–750

    Article  Google Scholar 

  56. Shahriari B, Swersky K, Wang Z, Adams RP, Freitas ND (2015) Taking the human out of the loop: a review of Bayesian optimization. Proc IEEE 104(1):1–24

    Google Scholar 

  57. Shan S, Wang GG (2010) Survey of modeling and optimization strategies to solve high-dimensional design problems with computationally-expensive black-box functions. Struct Multidiscip Optim 41(2):219–241

    Article  Google Scholar 

  58. Silver D, Huang A, Maddison CJ, Guez A, Sifre L, Van Den Driessche G, Schrittwieser J, Antonoglou I, Panneershelvam V, Lanctot M, Dieleman S, Grewe D, Nham J, Kalchbrenner N, Sutskever I, Lillicrap T, Leach M, Kavukcuoglu K, Graepel T, Hassabis D (2016) Mastering the game of Go with deep neural networks and tree search. Nature 529(7587):484–489

    CAS  PubMed  Article  Google Scholar 

  59. Silver D, Schrittwieser J, Simonyan K, Antonoglou I, Huang A, Guez A, Hubert T, Baker L, Lai M, Bolton A, Chen Y, Lillicrap T, Hui F, Sifre L, Van Den Driessche G, Graepel T, Hassabis D (2017) Mastering the game of Go without human knowledge. Nature 550(7676):354–359

    CAS  Article  Google Scholar 

  60. Spall JC (2003) Introduction to stochastic search and optimization: estimation, simulation, and control. Wiley, Hoboken

    Book  Google Scholar 

  61. Stillings D (1974) A survey of the history of electrical stimulation for pain to 1900. Med Instrum 9:255–259

    Google Scholar 

  62. Sun FT, Morrell MJ, Wharen RE (2008) Responsive cortical stimulation for the treatment of epilepsy. Neurotherapeutics 5(1):68–74

    PubMed  PubMed Central  Article  Google Scholar 

  63. Tzafriri AR, Lerner EI, Flashner-Barak M, Hinchcliffe M, Ratner E, Parnas H (2005) Mathematical modeling and optimization of drug delivery from intratumorally injected microspheres. Clin Cancer Res 11(2 I):826–834

    CAS  PubMed  Google Scholar 

  64. van Maanen MA, Vervoordeldonk MJ, Tak PP (2009) The cholinergic anti-inflammatory pathway: towards innovative treatment of rheumatoid arthritis. Nat Rev Rheumatol 5:229–232

    PubMed  Article  CAS  Google Scholar 

  65. von Stryk O, Bulirsch R (1992) Direct and indirect methods for trajectory optimization. Ann Oper Res 37(1):357–373

    Article  Google Scholar 

  66. Wilson D, Moehlis J (2014) Optimal chaotic desynchronization for neural populations. SIAM J Appl Dyn Syst 13(1):276–305

    Article  Google Scholar 

  67. Wilson D, Moehlis J (2016) Toward a more efficient implementation of antifibrillation pacing. PLoS ONE 11(7):1–28

    CAS  Google Scholar 

  68. Wong PK, Yu F, Shahangian A, Cheng G, Sun R, Ho CM (2008) Closed-loop control of cellular functions using combinatory drugs guided by a stochastic search algorithm. Proc Natl Acad Sci 105(13):5105–5110

    CAS  PubMed  Article  Google Scholar 

  69. Wongsarnpigoon A, Grill WM (2010) Energy-efficient waveform shapes for neural stimulation revealed with a genetic algorithm. J Neural Eng 7(4):1–20

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Clayton Foundation for Research and NIH R01 GM104987.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Joshua Chang.

Additional information

This article belongs to the Special Issue on Control Theory in Biology and Medicine. It derived from a workshop at the Mathematical Biosciences Institute, Ohio State University, Columbus, OH, USA.

Communicated by Peter J. Thomas.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chang, J., Paydarfar, D. Optimizing stimulus waveforms for electroceuticals. Biol Cybern 113, 191–199 (2019). https://doi.org/10.1007/s00422-018-0774-x

Download citation

Keywords

  • Electrical stimulation
  • Bioelectronic medicine
  • Calculus of variations
  • Stochastic search
  • Optimization algorithms