Biological Cybernetics

, Volume 113, Issue 1–2, pp 139–148 | Cite as

Optimizing SGLT inhibitor treatment for diabetes with chronic kidney diseases

  • Anita T. LaytonEmail author
Original Article


Diabetes induces glomerular hyperfiltration, affects kidney function, and may lead to chronic kidney diseases. A novel therapeutic treatment for diabetic patients targets the sodium–glucose cotransporter isoform 2 (SGLT2) in the kidney. SGLT2 inhibitors enhance urinary glucose, \(\hbox {Na}^+\) and fluid excretion and lower hyperglycemia in diabetes by inhibiting \(\hbox {Na}^+\) and glucose reabsorption along the proximal convoluted tubule. A goal of this study is to predict the effects of SGLT2 inhibitors in diabetic patients with and without chronic kidney diseases. To that end, we applied computational rat kidney models to assess how SGLT2 inhibition affects renal solute transport and metabolism when nephron population are normal or reduced (the latter simulates chronic kidney disease). The model predicts that SGLT2 inhibition induces glucosuria and natriuresis, with those effects enhanced in a remnant kidney. The model also predicts that the \(\hbox {Na}^+\) transport load and thus oxygen consumption of the S3 segment are increased under SGLT2 inhibition, a consequence that may increase the risk of hypoxia for that segment. To protect the vulnerable S3 segment, we explore dual SGLT2/SGLT1 inhibition and seek to determine the optimal combination that would yield sufficient urinary glucose excretion while limiting the metabolic load on the S3 segment. The model predicts that the optimal combination of SGLT2/SGLT1 inhibition lowers the oxygen requirements of key tubular segments, but decreases urine flow and \(\hbox {Na}^+\) excretion; the latter effect may limit the cardiovascular protection of the treatment.


Diabetes Glucose Sodium Metabolism 


  1. 1.
    Baines A, Ho P (2002) Glucose stimulates O\(_2\) consumption, NOS, and Na/H exchange in diabetic rat proximal tubules. Am J Physiol Renal Physiol 283:F286–F293CrossRefGoogle Scholar
  2. 2.
    Carmines P, Ohishi K, Ikenaga H (1996) Functional impairment of renal afferent arteriolar voltage-gated calcium channels in rats with diabetes mellitus. J Clin Invest 98(11):2564–2571CrossRefGoogle Scholar
  3. 3.
    Chen J, Sgouralis I, Moore L, Layton H, Layton A (2011) A mathematical model of the myogenic response to systolic pressure in the afferent arteriole. Am J Physiol Renal Physiol 300:F669–F681CrossRefGoogle Scholar
  4. 4.
    Cherney D, Perkins B, Soleymanlou N, Maione M, Lai V, Lee A, Fagan N, Woerle H, Johansen O, Broedl U, von Eynatten M (2014) Renal hemodynamic effect of sodium–glucose cotransporter 2 inhibition in patients with type 1 diabetes mellitus. Circulation 129:587–597CrossRefGoogle Scholar
  5. 5.
    Edwards A, Layton A (2014) Calcium dynamics underlying the afferent arteriole myogenic response. Am J Physiol Renal Physiol 306:F34–F48CrossRefGoogle Scholar
  6. 6.
    Eskandari S, Wright E, Loo D (2005) Kinetics of the reverse mode of the Na\(^+\)/glucose cotransporter. J Membr Biol 204:23–32CrossRefGoogle Scholar
  7. 7.
    Evans R, Harrop G, Ngo J, Ow C, O’Connor P (2014) Basal renal oxygen consumption and the efficiency of oxygen utilization for sodium reabsorption. Am J Physiol Renal Physiol 306:F551–F560CrossRefGoogle Scholar
  8. 8.
    Evans R, Ince C, Joles J, Smith D, May C, O’Connor P, Gardiner B (2013) Haemodynamic influences on kidney oxygenation: the clinical implications of integrative physiology. Clin Exp Pharmacol Physiol 40:106–122CrossRefGoogle Scholar
  9. 9.
    Foley R, Collins A (2007) End-stage renal disease in the United States: an update from the United States Renal Data System. J Am Soc Nephrol 18:2644–2648CrossRefGoogle Scholar
  10. 10.
    Fry B, Edwards A, Layton A (2015) Impacts of nitric oxide and superoxide on renal medullary oxygen transport and urine concentration. Am J Physiol Renal Physiol 308:F967–F980CrossRefGoogle Scholar
  11. 11.
    Fry B, Edwards A, Layton A (2015) Impact of nitric-oxide-mediated vasodilation and oxidative stress on renal medullary oxygenation: a modeling study. Am J Physiol Renal Physiol 310:F237–F247CrossRefGoogle Scholar
  12. 12.
    Fry B, Edwards A, Sgouralis I, Layton A (2014) Impact of renal medullary three-dimensional architecture on oxygen transport. Am J Physiol Renal Physiol 307:F263–F272CrossRefGoogle Scholar
  13. 13.
    Garvin J (1990) Glucose absorption by isolated perfused rat proximal straight tubules. Am J Physiol Renal Physiol 259:F580–F586CrossRefGoogle Scholar
  14. 14.
    Jauch P, Lauger P (1986) Electrogenic properties of the sodium-alanine cotransporter in pancreatic acinar cells: II. Comparison with transport models. J Membr Biol 94:117–127CrossRefGoogle Scholar
  15. 15.
    Kim S, Heo N, Jung J, Son MJ, Jang H, Lee J, Oh Y, Na K, Joo K, Han J (2010) Changes in the sodium and potasssium transporters in the course of chronic renal failure. Nephron Physiol 115:31–41CrossRefGoogle Scholar
  16. 16.
    Körner A, Eklöf AC, Celsi G, Aperia A (1994) Increased renal metabolism in diabetes: mechanism and functional implications. Diabetes 43:629–633CrossRefGoogle Scholar
  17. 17.
    Layton A (2010) Feedback-mediated dynamics in a model of a compliant thick ascending limb. Math Biosci 228:185–194CrossRefGoogle Scholar
  18. 18.
    Layton A (2011) A mathematical model of the urine concentrating mechanism in the rat renal medulla: I. Formulation and base-case results. Am J Physiol Renal Physiol 300:F356–F371CrossRefGoogle Scholar
  19. 19.
    Layton A (2011) A mathematical model of the urine concentrating mechanism in the rat renal medulla: II. Functional impliciations of three-dimensional architecture. Am J Physiol Renal Physiol 300:F372–F394CrossRefGoogle Scholar
  20. 20.
    Layton A (2015) Recent advances in renal hemodynamics: insights from bench experiments and computer simulations. Am J Physiol Renal Physiol 308:F951–F955CrossRefGoogle Scholar
  21. 21.
    Layton A, Dantzler W, Pannabecker T (2012) Urine concentrating mechanism: impact of vascular and tubular architecture and a proposed descending limb urea-Na\(^+\) cotransporter. Am J Physiol Renal Physiol 302:F591–F605CrossRefGoogle Scholar
  22. 22.
    Layton A, Edwards A, Vallon V (2017) Adaptive changes in GFR, tubular morphology and transport in subtotal nephrectomized kidneys: modeling and analysis. Am J Physiol Renal Physiol 313:F199–F209CrossRefGoogle Scholar
  23. 23.
    Layton A, Laghmani K, Vallon V, Edwards A (2016) Solute transport and oxygen consumption along the nephrons: effects of Na\(^+\) transport inhibitors. Am J Physiol Renal Physiol 311:F1217–F1229CrossRefGoogle Scholar
  24. 24.
    Layton A, Moore L, Layton H (2006) Multistability in tubuloglomerular feedback and spectral complexity in spontaneously hypertensive rats. Am J Physiol Renal Physiol 291:F79–F97CrossRefGoogle Scholar
  25. 25.
    Layton A, Moore L, Layton H (2009) Multistable dynamics mediated by tubuloglomerular feedback in a model of coupled nephrons. Bull Math Biol 71:515–555CrossRefGoogle Scholar
  26. 26.
    Layton A, Vallon V (2018) Cardiovascular benefits of SGLT2 inhibition in diabetes and chronic kidney diseases. Acta Physiol 222:e13050CrossRefGoogle Scholar
  27. 27.
    Layton A, Vallon V (2018) SGLT2 inhibition in a kidney with reduced nephron number: modeling and analysis of solute transport and metabolism. Am J Physiol Renal Physiol 313:F969–F984CrossRefGoogle Scholar
  28. 28.
    Layton A, Vallon V, Edwards A (2015) Modeling oxygen consumption in the proximal tubule: effects of NHE and SGLT2 inhibition. Am J Physiol Renal Physiol 308(12):F1343–F1357CrossRefGoogle Scholar
  29. 29.
    Layton A, Vallon V, Edwards A (2016) A computational model for simulating solute transport and oxygen consumption along the nephron. Am J Physiol Renal Physiol 311:F1378–F1390CrossRefGoogle Scholar
  30. 30.
    Layton A, Vallon V, Edwards A (2016) Predicted consequences of diabetes and SGLT inhibition on transport and oxygen consumption along a rat nephron. Am J Physiol Renal Physiol 310(11):F1269–F1283CrossRefGoogle Scholar
  31. 31.
    Maki L, Keizer J (1995) Mathematical analysis of a proposed mechanism for oscillatory insulin secretion in perfused HIT-15 cells. Bull Math Bioll 57:569–591CrossRefGoogle Scholar
  32. 32.
    O’Donnell M, Kasiske B, Daniels F, Keane W (1986) Effects of nephron loss on glomerular hemodynamic and morphology and diabetic rats. Diabetes 35:1011–1015CrossRefGoogle Scholar
  33. 33.
    Oliva R, Bakris G (2014) Blood pressure effects of sodium-glucose co-transport 2 (SGLT2) inhibitors. J Am Soc Hypertens 8:330–339CrossRefGoogle Scholar
  34. 34.
    Palm F, Cederberg J, Hansell P, Liss P, Carlsson P (2003) Reactive oxygen species cause diabetes-induced decrease in renal oxygen tension. Diabetologia 46:1153–1160CrossRefGoogle Scholar
  35. 35.
    Palm F, Hansell P, Ronquist G, Waldenstrom A, Liss P, Carlsson P (2004) Polyol-pathway-dependent disturbances in renal medullary metabolism in experimental insulin-deficient diabetes mellitus in rats. Diabetologia 47:1223–1231CrossRefGoogle Scholar
  36. 36.
    Parent L, Supplisson S, Loo D, Wright E (1992) Electrogenic properties of the cloned Na\(^+\)/glucose cotransporter: II. A transport model under nonrapid equilibrium conditions. J Membr Biol 125:63–79Google Scholar
  37. 37.
    Rich P (2003) The molecular machinery of Keilin’s respiratory chain. Biochem Soc Trans 6:1095–1105CrossRefGoogle Scholar
  38. 38.
    Rieg T, Masuda T, Gerasimova M, Mayoux E, Platt K, Powell D, Thomson S, Koepsell H, Vallon V (2014) Increase in SGLT1-mediated transport explains renal glucose reabsorption during genetic and pharmacological SGLT2 inhibition in euglycemia. Am J Physiol Renal Physiol 306:F188–F193CrossRefGoogle Scholar
  39. 39.
    Ryu H, Layton A (2012) Effect of tubular inhomogeneities on feedback-mediated dynamics of a model of a thick ascending limb. Med Math Biol 30:191–212CrossRefGoogle Scholar
  40. 40.
    Sgouralis I, Layton A (2014) Theoretical assessment of renal autoregulatory mechanisms. Am J Physiol Renal Physiol 306:F1357–F1371CrossRefGoogle Scholar
  41. 41.
    Sgouralis I, Layton A (2012) Autoregulation and conduction of vasomotor responses in a mathematical model of the rat afferent arteriole. Am J Physiol Renal Physiol 303:F229–F239CrossRefGoogle Scholar
  42. 42.
    Sgouralis I, Layton A (2015) Mathematical modeling of renal hemodynamics in physiology and pathophysiology. Math Biosci 264:8–20CrossRefGoogle Scholar
  43. 43.
    Thomson S, Rieg T, Miracle C, Mansoury H, Whaley J, Vallon V, Singh P (2012) Acute and chronic effects of SGLT2 blockade on glomerular and tubular function in the early diabetic rat. Am J Physiol Regul Int Comp Physiol 302:R75–R83CrossRefGoogle Scholar
  44. 44.
    Vallon V, Gerasimova M, Rose M, Masuda T, Satriano J, Mayoux E, Koepsell H, Thomson S, Rieg T (2014) SGLT2 inhibitor empagliozin reduces renal growth and albuminuria in proportion to hyperglycemia and prevents glomerular hyperltration in diabetic Akita mice. Am J Physiol Renal Physiol 306:194–204CrossRefGoogle Scholar
  45. 45.
    Vallon V, Rose M, Gerasimova M, Satriano J, Platt K, Koepsell H, Cunard R, Sharma K, Thomson S, Rieg T (2013) Knockout of Na-glucose transporter SGLT2 attenuates hyperglycemia and glomerular hyperfiltration but not kidney growth or injury in diabetes mellitus. Am J Physiol Renal Physiol 304:F156–F167CrossRefGoogle Scholar
  46. 46.
    Welch WJ, Baumgartl H, Lubber D, Wilcox C (2001) Nephron pO2 and renal oxygen usage in the hypertensive rat kidney. Kidney Int. 59:230–237CrossRefGoogle Scholar
  47. 47.
    Wright E, Loo D, Hirayama B (2011) Biology of human sodium glucose transporters. Physiol Rev 91:733–794CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Applied MathematicsUniversity of WaterlooWaterlooCanada

Personalised recommendations