Biological Cybernetics

, Volume 112, Issue 3, pp 165–179 | Cite as

Identification of optimal feedback control rules from micro-quadrotor and insect flight trajectories

  • Imraan A. Faruque
  • Florian T. Muijres
  • Kenneth M. Macfarlane
  • Andrew Kehlenbeck
  • J. Sean Humbert
Original Article


This paper presents “optimal identification,” a framework for using experimental data to identify the optimality conditions associated with the feedback control law implemented in the measurements. The technique compares closed loop trajectory measurements against a reduced order model of the open loop dynamics, and uses linear matrix inequalities to solve an inverse optimal control problem as a convex optimization that estimates the controller optimality conditions. In this study, the optimal identification technique is applied to two examples, that of a millimeter-scale micro-quadrotor with an engineered controller on board, and the example of a population of freely flying Drosophila hydei maneuvering about forward flight. The micro-quadrotor results show that the performance indices used to design an optimal flight control law for a micro-quadrotor may be recovered from the closed loop simulated flight trajectories, and the Drosophila results indicate that the combined effect of the insect longitudinal flight control sensing and feedback acts principally to regulate pitch rate.


Insect Flight Control Optimal Identification Drosophila 


  1. Aïoun F, Heniche A, Bourlès H (1994) Maximally-diagonal solution to the inverse LQR problem. In: Proceedings of the 33rd conference on decision and control, pp 1445–1446Google Scholar
  2. Beatus T, Guckenheimer JM, Cohen I (2015) Controlling roll perturbations in fruit flies. J R Soc Interface 12(105):20150075Google Scholar
  3. Boyd S, Ghaoui LE, Feron E, Balakrishnan V (1997) Linear matrix inequalities in system and control theory (studies in applied and numerical mathematics). Society for Industrial and Applied Mathematics, PhiladelphiaGoogle Scholar
  4. Camhi JM (1970) Yaw-correcting postural changes in locusts. J Exp Biol 52(3):519–531Google Scholar
  5. Cheng B, Fry SN, Huang Q, Deng X (2010) Aerodynamic damping during rapid flight maneuvers in the fruit fly drosophila. J Exp Biol 213:602–612CrossRefPubMedGoogle Scholar
  6. Conroy J, Gremillion G, Ranganathan B, Humbert JS (2009) Implementation of wide-field integration of optic flow for autonomous quadrotor navigation. J Exp Biol 27:189–198Google Scholar
  7. David CT (1978) The relationship between body angle and flight speed in free-flying drosophila. Physiol Entomol 3(3):191–195CrossRefGoogle Scholar
  8. Dickinson MH (1990) Comparison of encoding properties of campaniform sensilla on the fly wing. J Exp Biol 151(1):245–261Google Scholar
  9. Dickinson MH, Lighton JR (1995) Muscle efficiency and elastic storage in the flight motor of drosophila. Science 268(5207):87CrossRefPubMedGoogle Scholar
  10. Dickinson MH, Muijres FT (2016) The aerodynamics and control of free flight maneuvers in drosophila. Philos Trans R Soc B 371(20150388)Google Scholar
  11. Dickinson MH, Tu MS (1997) The function of dipteran flight muscle. Comp Biochem Physiol A Physiol 116(3):223–238CrossRefGoogle Scholar
  12. Dickinson MH, Lehmann FO, Sane SP (1954) Wing rotation and the aerodynamic basis of insect flight. Science 284:1999Google Scholar
  13. Eberle A, Dickerson B, Reinhall PG, Daniel T (2015) A new twist on gyroscopic sensing: body rotations lead to torsion in flapping, flexing insect wings. J R Soc Interface 12(104):20141088CrossRefPubMedPubMedCentralGoogle Scholar
  14. Faruque IA, Humbert JS (2010a) Dipteran insect flight dynamics .Part 2: lateral–directional motion about hover. J Theor Biol 265(3):306–313Google Scholar
  15. Faruque IA, Humbert JS (2010b) Dipteran insect flight dynamics. Part 1: longitudinal motion about hover. J Theor Biol 264(2):538–552CrossRefPubMedGoogle Scholar
  16. Fiala J, Kocvara M, Stingl M (2013) PENLAB: a MATLAB solver for nonlinear semidefinite optimization. arXiv preprint arXiv:1311.5240
  17. Fry SN, Sayaman R, Dickinson MH (2003) The aerodynamics of free-flight maneuvers in Drosophila. Science 300(5618):495–498Google Scholar
  18. Fujii T, Narazaki M (1984) A complete optimality condition in the inverse problem of optimal control. SIAM J Control Optim 22(2):327–341CrossRefGoogle Scholar
  19. Gao N, Aono H, Liu H (2011) Perturbation analysis of 6DoF flight dynamics and passive dynamic stability of hovering fruit fly Drosophila Melanogaster. J Theor Biol 270:98–111CrossRefPubMedGoogle Scholar
  20. Götz KG (1968) Flight control in drosophila by visual perception of motion. Kybernetik 4(6):199–208CrossRefPubMedGoogle Scholar
  21. Götz KG (1987) Course-control, metabolism and wing interference during ultralong tethered flight in drosophila melanogaster. J Exp Biol 128(1):35–46Google Scholar
  22. Graetzel CF, Nelson BJ, Fry SN (2010) Frequency response of lift control in Drosophila. J R Soc Interface 7(52):1603–1616CrossRefPubMedPubMedCentralGoogle Scholar
  23. Hedrick TL (2008) Software techniques for two- and three-dimensional kinematic measurements of biological and biomimetic systems. Bioinspir Biomim 3(3):034001CrossRefPubMedGoogle Scholar
  24. Hedrick TL, Robinson AK (2010) Within-wingbeat damping: dynamics of continuous free-flight yaw turns in Manduca sexta. Biol Lett 6:422–425CrossRefPubMedPubMedCentralGoogle Scholar
  25. Hedrick TL, Cheng B, Deng X (2009) Wingbeat time and the scaling of passive rotational damping in flapping flight. Science 324:252–255CrossRefPubMedGoogle Scholar
  26. Heisenberg M, Wolf R (2013) Vision in Drosophila: genetics of microbehavior, vol 12. Springer, BerlinGoogle Scholar
  27. Kalman RE (1964) When is a linear control system optimal. J Basic Eng 86D:51–60CrossRefGoogle Scholar
  28. Kennedy J (1983) Zigzagging and casting as a programmed response to wind-borne odour: a review. Physiol Entomol 8(2):109–120CrossRefGoogle Scholar
  29. Krapp HG (2009) Ocelli. Curr Biol 19(11):R435–R437CrossRefPubMedGoogle Scholar
  30. MacFarlane K, Bush B, Faruque I, Humbert JS, Baeder J (2011) Quasi-steady and computational aerodynamics applied to hovering Drosophila dynamics. In: AIAA 29th applied aerodynamics conference, June 2011. Honolulu, Hawaii, No. 2011-3793Google Scholar
  31. MacFarlane KM, Faruque IA, Humbert JS (2015) Power regulation of kinematic control inputs for forward flying Drosophila. Acta Mech Sin 30(6):809–818CrossRefGoogle Scholar
  32. Klein V, Morelli E (2002) Aircraft system identification: theory and practice. In: AIAAGoogle Scholar
  33. Muijres FT, Elzinga MJ, Melis JM, Dickinson MH (2014) Flies evade looming targets by executing rapid visually directed banked turns. Science 344:172CrossRefPubMedGoogle Scholar
  34. Muijres FT, Elzinga MJ, Iwasaki NA, Dickinson MH (2015) Body saccades of drosophila consist of stereotyped banked turns. J Exp Biol 218(6):864–875CrossRefPubMedGoogle Scholar
  35. Pringle JWS (1948) The gyroscopic mechanism of the halteres of diptera. Philos Trans R Soc Lond B Biol Sci 233(602):347–384CrossRefGoogle Scholar
  36. Ristroph L, Bergou AJ, Ristroph G, Coumes K, Berman GJ, Guckenheimer J, Wang ZJ, Cohen I (2010) Discovering the flight autostabilizer of fruit flies by inducing aerial stumbles. Proc Nat Acad Sci 107(11):4820–4824CrossRefPubMedPubMedCentralGoogle Scholar
  37. Ristroph L, Ristroph G, Morozova S, Bergou AJ, Chang S, Guckenheimer J, Wang ZJ, Cohen I (2013) Active and passive stabilization of body pitch in insect flight. J R Soc Interface 10(85):20130237CrossRefPubMedPubMedCentralGoogle Scholar
  38. Sane SP (2003) The aerodynamics of insect flight. J Exp Biol 206:4191–4208CrossRefPubMedGoogle Scholar
  39. Sane SP, Dieudonné A, Willis MA, Daniel T (2007) Antennal mechanosensors mediate flight control in moths. Science 315(5813):863–866CrossRefPubMedGoogle Scholar
  40. Schneider D (1964) Insect antennae. Annu Rev Entomol 9(1):103–122CrossRefGoogle Scholar
  41. Sherman A, Dickinson MH (2003) A comparison of visual and haltere-mediated equilibrium reflexes in the fruit fly Drosophila melanogaster. J Exp Biol 206:295–302CrossRefPubMedGoogle Scholar
  42. Sherman A, Dickinson MH (2004) Summation of visual and mechanosensory feedback in Drosophila flight control. J Exp Biol 207:133–142CrossRefPubMedGoogle Scholar
  43. Sturm JF (1999) Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones. Optim Methods Softw 11(1–4):625–653CrossRefGoogle Scholar
  44. Straw AD, Lee S, Dickinson MH (2010) Visual control of altitude in flying drosophila. Curr Biol 20(17):1550–1556CrossRefPubMedGoogle Scholar
  45. Sun M, Wang J, Xiong Y (2007) Dynamic flight stability of hovering insects. Acta Mech Sin 23:231–246CrossRefGoogle Scholar
  46. Taylor GK, Thomas ALR (2003) Dynamic flight stability in the desert locust Schistocerca gregaria. J Exp Biol 206:2803–2829CrossRefPubMedGoogle Scholar
  47. Thompson RA, Wehling MF, Evers J (2008) Evaluation of the haltere as a biologically inspired inertial rate measurement sensor. In: Guidance, navigation, and control conferenceGoogle Scholar
  48. van Breugel F, Dickinson MH (2012) The visual control of landing and obstacle avoidance in the fruit fly drosophila melanogaster. J Exp Biol 215(11):1783–1798CrossRefPubMedGoogle Scholar
  49. van Breugel F, Dickinson MH (2014) Plume-tracking behavior of flying drosophila emerges from a set of distinct sensory-motor reflexes. Curr Biol 24(3):274–286CrossRefPubMedGoogle Scholar
  50. Vela PA, Burdick JW (2003) Control of biomimetic locomotion via averaging theory. In: Proceedings of the IEEE international conference on robotics and automation, 2003, ICRA’03, vol 1, pp 1482–1489Google Scholar
  51. Wehner R (1981) Spatial vision in arthropods. In: Autrum H (ed) Handbook of sensory physiology, vol 7/6C. Springer, Berlin, pp 287–616Google Scholar
  52. Weis-Fogh T (1949) An aerodynamic sense organ stimulating and regulating flight in locusts. Nature 164(4177):873.
  53. Wu JH, Mao S (2012) Floquet stability analysis of the longitudinal dynamics of two hovering model insects. J R Soc Interface 9(74):2033–2046CrossRefPubMedPubMedCentralGoogle Scholar
  54. Ye Y, Todd MJ, Mizuno S (1994) An O (nL)-iteration homogeneous and self-dual linear programming algorithm. Math Oper Res 19(1):53–67CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Imraan A. Faruque
    • 1
  • Florian T. Muijres
    • 3
  • Kenneth M. Macfarlane
    • 2
  • Andrew Kehlenbeck
    • 2
  • J. Sean Humbert
    • 4
  1. 1.School of Mechanical and Aerospace EngineeringOklahoma State UniversityStillwaterUSA
  2. 2.Department of Aerospace EngineeringUniversity of MarylandCollege ParkUSA
  3. 3.WU Animal SciencesWageningen URWageningenThe Netherlands
  4. 4.Department of Mechanical EngineeringUniversity of ColoradoBoulderUSA

Personalised recommendations