Area-specific processing of cerebellar-thalamo-cortical information in primates

Abstract

The cerebellar-thalamo-cortical (CTC) system plays a major role in controlling timing and coordination of voluntary movements. However, the functional impact of this system on motor cortical sites has not been documented in a systematic manner. We addressed this question by implanting a chronic stimulating electrode in the superior cerebellar peduncle (SCP) and recording evoked multiunit activity (MUA) and the local field potential (LFP) in the primary motor cortex (\(n=926\)), the premotor cortex (\(n=357\)) and the somatosensory cortex (\(n=345\)). The area-dependent response properties were estimated using the MUA response shape (quantified by decomposing into principal components) and the time-dependent frequency content of the evoked LFP. Each of these signals alone enabled good classification between the somatosensory and motor sites. Good classification between the primary motor and premotor areas could only be achieved when combining features from both signal types. Topographical single-site representation of the predicted class showed good recovery of functional organization. Finally, the probability for misclassification had a broad topographical organization. Despite the area-specific response features to SCP stimulation, there was considerable site-to-site variation in responses, specifically within the motor cortical areas. This indicates a substantial SCP impact on both the primary motor and premotor cortex. Given the documented involvement of these cortical areas in preparation and execution of movement, this result may suggest a CTC contribution to both motor execution and motor preparation. The stimulation responses in the somatosensory cortex were sparser and weaker. However, a functional role of the CTC system in somatosensory computation must be taken into consideration.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Asanuma C, Thach W, Jones E (1983a) Anatomical evidence for segregated focal groupings of efferent cells and their terminal ramifications in the cerebellothalamic pathway of the monkey. Brain Res Rev 286:267–297

    CAS  Article  Google Scholar 

  2. Asanuma C, Thach WT, Jones EG (1983b) Distribution of cerebellar terminations and their relation to other afferent terminations in the ventral lateral thalamic region of the monkey. Brain Res Rev 286:237–265

    CAS  Article  Google Scholar 

  3. Aumann T, Rawson J, Finkelstein D, Horne M (1994) Projections from the lateral and interposed cerebellar nuclei to the thalamus of the rat: a light and electron microscopic study using single and double anterograde labelling. J Comp Neurol 349:165–181

    CAS  Article  PubMed  Google Scholar 

  4. Bastian AJ, Martin TA, Keating JG, Thach WT (1996) Cerebellar ataxia: abnormal control of interaction torques across multiple joints. J Neurophysiol 76:18

    Google Scholar 

  5. Bo J, Block HJ, Clark JE, Bastian AJ (2008) A cerebellar deficit in sensorimotor prediction explains movement timing variability. J Neurophysiol 100:2825–2832. https://doi.org/10.1152/jn.90221.2008

    Article  PubMed  PubMed Central  Google Scholar 

  6. Breiman L (2001) Random forests. Mach Learn 45:5–32. https://doi.org/10.1023/A:1010933404324

    Article  Google Scholar 

  7. Breiman L, Friedman J, Olshen R, Stone C (1984) Classification and regression trees. Wadsworth Statistics/Probability, Belmont

    Google Scholar 

  8. Burchfiel JL, Duffy FH (1972) Muscle afferent input to single cells in primates somatosensory cortex. Brain Res 45:241–246

    CAS  Article  PubMed  Google Scholar 

  9. Cheney PD, Fetz EE (1985) Comparable patterns of muscle facilitation evoked by individual corticomotoneuronal (CM) cells and by single intracortical microstimuli in primates: evidence for functional groups of CM cells. J Neurophysiol 53:786–804

    CAS  Article  PubMed  Google Scholar 

  10. Darian-Smith C, Darian-Smith I, Burman K, Ratcliffe N (1993) Ipsilateral cortical projections to areas 3a, 3b, and 4 in the macaque monkey. J Comp Neurol 335:14

    Google Scholar 

  11. Fromm C, Evarts EV (1982) Pyramidal tract neurons in somatosensory cortex: central and peripheral inputs during voluntary movement. Brain Res 238:6

    Article  Google Scholar 

  12. Gao J-H, Parsons LM, Bower JM, Xiong J, Li J, Fox PT (1996) Cerebellum implicated in sensory acquisition and discrimination rather than motor control. Science 272:545–547

    CAS  Article  PubMed  Google Scholar 

  13. Ghez C, Sainbosrg R (1995) Proprioceptive control of interjoint coordination. Can J Physiol Phamacol 73:273–284

    CAS  Article  Google Scholar 

  14. Godschalk M, Lemon R, Kuypers H, Van der Steen J (1985) The involvement of monkey premotor cortex neurones in preparation of visually cued arm movements. Behav Brain Res 18:143–167

    CAS  Article  PubMed  Google Scholar 

  15. Gorodkin J (2004) Comparing two K-category assignments by a K-category correlation coefficient. Comput Biol Chem 28:367–374. https://doi.org/10.1016/j.compbiolchem.2004.09.006

    CAS  Article  PubMed  Google Scholar 

  16. Heath CJ, Hore J, Phillips CG (1976) Inputs from low-threshold muscle and cutaneous afferents of hand and forearm to areas 3a and 3b of baboon’s cerebral cortex. J Physiol Lon 257:199–227

    CAS  Article  Google Scholar 

  17. Holmes G (1939) The cerebellum of man. Brain J Neurol 62:1–30

    Article  Google Scholar 

  18. Holsapple J, Preston J, Strick P (1991) The origin of thalamic inputs to the hand representation in the primary motor cortex. J Neurosci 11:2644–2654

    CAS  Article  PubMed  Google Scholar 

  19. Hore J, Flament D (1988) Changes in motor cortex neural discharge associated with the development of cerebellar limb ataxia. J Neurophysiol 60:1285–1302

    CAS  Article  PubMed  Google Scholar 

  20. Hore J, Preston JB, Cheney PD (1976) Responses of cortical neurons (areas 3a and 4) to ramp stretch of hindlimb muscles in the baboon. J Neurophysiol 39:17

    Article  Google Scholar 

  21. Huffman KJ, Krubitzer L (2001) Area 3a: topographic organization and cortical connections in marmoset monkeys. Cereb Cortex 11:19

    Article  Google Scholar 

  22. Ivanusic JJ, Bourke DW, Xu ZM, Butler EG, Horne MK (2005) Cerebellar thalamic activity in the macaque monkey encodes the duration but not the force or velocity of wrist movement. Brain Res 1041:181–197. https://doi.org/10.1016/j.brainres.2005.02.005

    CAS  Article  PubMed  Google Scholar 

  23. Ivry R, Keele S (1989) Timing functions of the cerebellum. J Cogn Neurosci 1:136–152

    CAS  Article  PubMed  Google Scholar 

  24. Jones EG, Coulter JD, Hendry SHC (1978) Intracortical connectivity of architectonic fields in the somatic sensory, motor and parietal cortex of monkeys. J Comp Neurol 181:57

    Article  Google Scholar 

  25. Martin JH, Cooper SE, Hacking A, Ghez C (2000) Differential effects of deep cerebellar nuclei inactivation on reaching and adaptive control. J Neurophysiol 83:1886–1899

    CAS  Article  PubMed  Google Scholar 

  26. Matelli M, Luppino G, Fogassi L, Rizzolatti G (1989) Thalamic input to inferior area 6 and area 4 in the macaque monkey. J Comp Neurol 280:468–488. https://doi.org/10.1002/cne.902800311

    CAS  Article  PubMed  Google Scholar 

  27. Matthews BW (1975) Comparison of the predicted and observed secondary structure of T4 phage lysozyme. Biochim Biophys Acta 405:442–451

    CAS  Article  PubMed  Google Scholar 

  28. Matyas F et al (2010) Motor control by sensory cortex. Science 330:1240–1243

    CAS  Article  PubMed  Google Scholar 

  29. Meyer-Lohmann J, Conrad B, Matsunami K, Brooks VB (1975) Effects of dentate cooling on precentral unit activity following torque pulse injections into elbow movements. Brain Res 94:237–251

    CAS  Article  PubMed  Google Scholar 

  30. Moran DW, Schwartz AB (1999) Motor cortical representation of speed and direction during reaching. J Neurosci 82:2676–2692

    CAS  Google Scholar 

  31. Morrow MM, Jordan LR, Miller LE (2007) Direct comparison of the task-dependent discharge of M1 in hand space and muscle space. J Neurophysiol 97:1786–1798

    CAS  Article  PubMed  Google Scholar 

  32. Mountcastle VB, Powell TPS (1959) Central nervous mechanisms subserving position sense and kinesthesis. Bull Johns Hopkins Hosp 105:173–200

    CAS  PubMed  Google Scholar 

  33. Nelson RJ (1987) Activity of monkey primary somatosensory cortical neurons changes prior to active movement. Brain Res 406:402–407

    CAS  Article  PubMed  Google Scholar 

  34. Nudo RJ (2013) Recovery after brain injury: mechanisms and principles. Front Hum Neurosci 7:887. https://doi.org/10.3389/fnhum.2013.00887

    Article  PubMed  PubMed Central  Google Scholar 

  35. Orioli PJ, Strick PL (1989) Cerebellar connections with the motor cortex and the arcuate premotor area—an analysis employing retrograde transneuronal transport of WGA-HRP. J Comp Neurol 288:612–626

    CAS  Article  PubMed  Google Scholar 

  36. Padberg J, Cerkevich C, Engle J, Rajan AT, Recanzone G, Kaas J, Krubitzer L (2009) Thalamocortical connections of parietal somatosensory cortical fields in macaque monkeys are highly divergent and convergent. Cereb Cortex 19:27

    Article  Google Scholar 

  37. Padberg J et al (2007) Parallel evolution of cortical areas involved in skilled hand use. J Neurosci 27:10

    Article  Google Scholar 

  38. Petreanu L et al (2012) Activity in motor-sensory projections reveals distributed coding in somatosensation. Nature 489:299–303. https://doi.org/10.1038/nature11321

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  39. Phillips C, Powell T, Wiesandanger M (1971) Projections from low threshold muscle afferents of hand and forearm to area 3a of baboon’s cortex. J Physiol 217:419–446

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  40. Proville RD et al (2014) Cerebellum involvement in cortical sensorimotor circuits for the control of voluntary movements. Nat Neurosci 17:1233–1239. https://doi.org/10.1038/nn.3773

    CAS  Article  PubMed  Google Scholar 

  41. Rickert J, Riehle A, Aertsen A, Rotter S, Nawrot MP (2009) Dynamic encoding of movement direction in motor cortical neurons. J Neurosci 29:13870–13882. https://doi.org/10.1523/JNEUROSCI.5441-08.2009

    CAS  Article  PubMed  Google Scholar 

  42. Ruach R, Mitelman R, Sherman E, Cohen O, Prut Y (2015) An assumption-free quantification of neural responses to electrical stimulations. J Neurosci Methods. https://doi.org/10.1016/j.jneumeth.2015.07.005

    PubMed  Google Scholar 

  43. Sainburg RL, Poizner H, Ghez C (1993) Loss of proprioception produces deficits in interjoint coordination. J Neurophysiol 70:12

    Article  Google Scholar 

  44. Sakai ST, Insae M, Tanji J (1996) Comparison of cerebellothalamic and pallidothalamic projections in the monkey (Macaca fuscata)—a double anterograde labeling study. J Comp Neurol 368:215–228

    CAS  Article  PubMed  Google Scholar 

  45. Schell G, Strick P (1984) The origin of thalamic inputs to the arcuate premotor and supplementary motor areas. J Neurosci 4:539–560

    CAS  Article  PubMed  Google Scholar 

  46. Scott SH, Gribble PL, Graham KM, Cabel DW (2001) Dissociation between hand motion and population vectors from neural activity in motor cortex. Nature 413:161–165

    CAS  Article  PubMed  Google Scholar 

  47. Shalit U, Zinger N, Joshua M, Prut Y (2012) Descending systems translate transient cortical commands into a sustained muscle activation signal. Cereb Cortex 22:1904–1914. https://doi.org/10.1093/cercor/bhr267

    Article  PubMed  Google Scholar 

  48. Shinoda Y, Kakei S, Futami T, Wannier T (1993) Thalamocortical organization in the cerebello-thalamo-cortical system. Cereb Cortex 3:421–429

    CAS  Article  PubMed  Google Scholar 

  49. Shinoda Y, Yamazaki M, Futami T (1982) Convergent inputs from the dentate and the interpositus nuclei to pyramidal tract neurons in the motor cortex. Neurosci Lett 34:111–115

    CAS  Article  PubMed  Google Scholar 

  50. Spencer RM, Zelaznik HN, Diedrichsen J, Ivry RB (2003) Disrupted timing of discontinuous but not continuous movements by cerebellar lesions. Science 300:1437–1439. https://doi.org/10.1126/science.1083661

    CAS  Article  PubMed  Google Scholar 

  51. Strick PL (1986) The organization of thalamic inputs to the “premotor” areas. Prog Brain Res 64:99–109. https://doi.org/10.1016/s0079-6123(08)63405-6

    CAS  Article  PubMed  Google Scholar 

  52. Wang X, Zhang M, Cohen IS, Goldberg ME (2007) The proprioceptive representation of eye position in monkey primary somatosensory cortex. Nat Neurosci 10:7

    Article  Google Scholar 

  53. Weinrich M, Wise SP (1982) The premotor cortex of the monkey. J Neurosci 2:1329–1345

    CAS  Article  PubMed  Google Scholar 

  54. Yanai Y, Adamit N, Harel R, Israel Z, Prut Y (2007) Connected corticospinal sites show enhanced tuning similarity at the onset of voluntary action. J Neurosci 27:12349–12357. https://doi.org/10.1523/JNEUROSCI.3127-07.2007

    CAS  Article  PubMed  Google Scholar 

  55. Yanai Y, Adamit N, Israel Z, Harel R, Prut Y (2008) Coordinate transformation is first completed downstream of primary motor cortex. J Neurosci 28:1728–1732. https://doi.org/10.1523/JNEUROSCI.4662-07.2008

    CAS  Article  PubMed  Google Scholar 

  56. Zinger N, Harel R, Gabler S, Israel Z, Prut Y (2013) Functional organization of information flow in the corticospinal pathway. J Neurosci 33:1190–1197

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgements

This research was funded by the German Israeli Foundation (GIF, Grant I-1224-396.13/2012 to MN and YP) within the project Multiple Time Scales of Signals and Noise in the Motor Hierarchy. Additional funding was received from the Israel Science Foundation (ISF-1787/13), the generous support of the Baruch Foundation (YP), and the German Science Foundation under the Institutional Strategy of the University of Cologne within the German Excellence Initiative (DFG-ZUK 81/1) (MN).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Yifat Prut.

Additional information

This article belongs to a Special Issue on Neural Coding.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (docx 98 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Nashef, A., Rapp, H., Nawrot, M.P. et al. Area-specific processing of cerebellar-thalamo-cortical information in primates. Biol Cybern 112, 141–152 (2018). https://doi.org/10.1007/s00422-017-0738-6

Download citation

Keywords

  • Motor control
  • Thalamocortical
  • Cerebellum
  • Multiunit activity
  • Local field potential
  • Machine learning