Skip to main content
Log in

‘Two vs one’ rivalry by the Loxley–Robinson model

  • Original Article
  • Published:
Biological Cybernetics Aims and scope Submit manuscript

Abstract

We apply the competitive model of Loxley and Robinson (Phys Rev Lett 102:258701, 2009. doi:10.1103/PhysRevLett.102.258701) to the study of a special case of visual rivalry. Three-peaked inputs with maxima at symmetrical locations are introduced, and the role of three-bump configurations is then considered. The model yields conditions for what can be interpreted as a bistable percept analogous to the one-dimensional version of a competition between the central and flanking parts of an image.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Amari S (1977) Dynamics of pattern formation in lateral-inhibition type neural fields. Biol Cybern 27:77–87

    Article  CAS  PubMed  Google Scholar 

  2. Andrews TJ, Schluppeck D, Homfray D, Matthews P, Blakemore C (2002) Activity in the fusiform gyrus predicts conscious perception of Rubin’s vase-face illusion. NeuroImage 17:890–901. doi:10.1006/nimg.2002.1243

    Article  PubMed  Google Scholar 

  3. Attneave F (1971) Multistability in perception. Sci Am 225:61–71

    Article  Google Scholar 

  4. Blake R (1989) A neural theory of binocular rivalry. Psychol Rev 96:145–167

    Article  CAS  PubMed  Google Scholar 

  5. Blake R, Logothetis NK (2002) Visual competition. Nat Rev Neurosci 3:13–21

    Article  CAS  PubMed  Google Scholar 

  6. Blake R, Wilson H (2011) Binocular vision. Vis Res 51:754–770

    Article  PubMed  Google Scholar 

  7. Bressloff PC (2005) Spontaneous symmetry breaking in self-organizing neural fields. Biol Cybern 93:256–274. doi:10.1007/s00422-005-0002-3

    Article  PubMed  Google Scholar 

  8. Bressloff PC, Coombes S (2013) Neural bubble dynamics revisited. Cogn Comput 5:281–294. doi:10.1007/s12559-013-9214-3

    Article  Google Scholar 

  9. Compte A, Brunel N, Goldman-Rakic P, Wang X-J (2000) Synaptic mechanisms and network dynamics underlying spatial working memory in a cortical network model. Cereb Cortex 10:910–923

    Article  CAS  PubMed  Google Scholar 

  10. Coombes S, Owen MR (2004) Evans functions for integral neural field equations with Heaviside firing rate function. SIAM J Appl Dyn Syst 34:574–600

    Article  Google Scholar 

  11. Coombes S, Owen MR (2005) Bumps, breathers, and waves in a neural network with spike frequency adaptation. Phys Rev Lett 94:148102

    Article  CAS  PubMed  Google Scholar 

  12. Coombes S, Owen MR (2007) Exotic dynamics in a firing rate model of neural tissue with threshold accommodation. Contemp Math 440:123–144

    Article  Google Scholar 

  13. Ermentrout GB, Terman D (2010) Foundations of mathematical neuroscience. Interdisciplinary applied mathematics. Springer, Berlin

    Book  Google Scholar 

  14. Folias EE, Bressloff PC (2004) Breathing pulses in an excitatory neural network. SIAM J Appl Dyn Syst 3:378–407

    Article  Google Scholar 

  15. Huguet G, Rinzel J, Hupé J-M (2014) Noise and adaptation in multistable perception: noise drives when to switch, adaptation determines percept choice. J Vis 14:1–24. doi:10.1167/14.3.19

    Article  Google Scholar 

  16. Izhikevich EM (2007) Dynamical systems in neuroscience: the geometry of excitability and bursting. MIT Press, Cambridge

    Google Scholar 

  17. Kilpatrick ZP, Bressloff PC (2010) Spatially structured oscillations in a two-dimensional excitatory neuronal network with synaptic depression. J Comput Neurosci 28:193–209. doi:10.1007/s10827-009-0199-6

    Article  PubMed  Google Scholar 

  18. Kilpatrick ZP (2013) Short term synaptic depression improves information transfer in perceptual multistability. Front Comput Neurosci 7(85):1–16. doi:10.3389/fncom.2013.00085

    Google Scholar 

  19. Lago-Fernández LF, Deco G (2002) A model of binocular rivalry based on competition in IT. Neurocomputing 44:503–507

    Article  Google Scholar 

  20. Laing CR, Chow CC (2002) A spiking neuron model for binocular rivalry. J Comput Neurosci 12:39–53

    Article  PubMed  Google Scholar 

  21. Laing CR, Troy WC, Gutkin B, Ermentrout GB (2002) Multiple bumps in a neuronal model of working memory. SIAM J Appl Math 63:62–97

    Article  Google Scholar 

  22. Laing CR, Troy WC (2003) Two-bump solutions of Amari-type models of neuronal pattern formation. Physica D 178:190–213

    Article  Google Scholar 

  23. Laing CR (2014) Numerical bifurcation theory for high-dimensional neural models. J Math Neurosci 4:13. doi:10.1186/2190-8567-4-13

    Article  PubMed  Google Scholar 

  24. Lehky SR (1988) An astable multivibrator model of binocular rivalry. Perception 17:215–228

    Article  CAS  PubMed  Google Scholar 

  25. Loxley PN, Robinson PA (2007) Energy approach to rivalry dynamics, soliton stability, and pattern formation in neuronal networks. Phys Rev E 76:046224. doi:10.1103/PhysRevE.76.046224

    Article  CAS  Google Scholar 

  26. Loxley PN, Robinson PA (2009) Soliton model of competitive neural dynamics during binocular rivalry. Phys Rev Lett 102:258701. doi:10.1103/PhysRevLett.102.258701

    Article  CAS  PubMed  Google Scholar 

  27. Matsuoka K (1984) The dynamic model of binocular rivalry. Biol Cybern 49:201–208

    Article  CAS  PubMed  Google Scholar 

  28. Matsuoka K (1985) Sustained oscillations generated by mutually inhibiting neurons with adaptation. Biol Cybern 52:367–376

    Article  CAS  PubMed  Google Scholar 

  29. Moreno-Bote R, Rinzel J, Rubin N (2007) Noise-induced alternations in an attractor network model of perceptual bistability. J Neurophysiol 98:1125–1139. doi:10.1152/jn.00116.2007

    Article  PubMed  PubMed Central  Google Scholar 

  30. Naber M, Gruenhage G, Einhäuser W (2010) Tri-stable stimuli reveal interactions among subsequent percepts: rivalry is biased by perceptual history. Vis Res 50:818–828. doi:10.1016/j.visres.2010.02.004

    Article  PubMed  Google Scholar 

  31. Necker L (1832) Observations on some remarkable optical phenomena seen in Switzerland, and on an optical phenomenon which occurs on viewing a figure of a crystal or geometrical solid. Lond Edinb Philos Mag J Sci 1:329–337

    Google Scholar 

  32. Ngo TT, Liu GB, Tilley AJ, Pettigrew JD, Miller SM (2008) The changing face of perceptual rivalry. Brain Res Bull 75:610–618. doi:10.1016/j.brainresbull.2007.10.006

    Article  PubMed  Google Scholar 

  33. Orbach J, Zucker E, Olson R (1966) Reversibility of the Necker cube VII. Reversal rate as a function of figure-on and figure-off durations. Percept Mot Skills 17:439–458

    Article  Google Scholar 

  34. Owen MR, Laing CR, Coombes S (2007) Bumps and rings in a two-diemensional neural field: splitting and rotational instabilities. New J Phys 9:378–401

    Article  Google Scholar 

  35. Rankin J, Meso AI, Masson GS, Faugeras O, Kornprobst P (2014) Bifurcation study of a neural field competition model with an application to perceptual switching in motion integration. J Comput Neurosci 36:193–213. doi:10.1007/s10827-013-0465-5

    Article  CAS  PubMed  Google Scholar 

  36. Romeo A, Supèr H. (2017) Bump competition and lattice solutions in two-dimensional neural fields. Neural Netw 94:141–158. doi:10.1016/j.neunet.2017.07.003

  37. Rubin E (2001) Visuell wahrgenommene Figuren, Gyldendals, Copenhagen (1921)

  38. Rubin N (2001) Figure and ground in the brain. Nat Neurosci 4:857–858. doi:10.1038/nn0901-857

    Article  CAS  PubMed  Google Scholar 

  39. Rubin N (2003) Binocular rivalry and perceptual multi-stability. Trends Neurosci 26:289–291

    Article  CAS  PubMed  Google Scholar 

  40. Shpiro A, Moreno-Bote R, Rubin N, Rinzel J (2009) Balance between noise and adaptation in competition models of perceptual bistability. J Comput Neurosci. doi:10.1007/s10827-008-0125-3

    PubMed  PubMed Central  Google Scholar 

  41. Supèr H, Romeo A, Keil M (2010) Feed-forward segmentation of figure-ground and assignment of border-ownership. PLoS ONE 5:e10705. doi:10.1371/journal.pone.0010705

    Article  PubMed  PubMed Central  Google Scholar 

  42. Suzuki S, Grabowecky M (2002) Evidence for perceptual ’trapping’ and adaptation in multistable binocular rivalry. Neuron 36:143–157

    Article  CAS  PubMed  Google Scholar 

  43. Wallis G, Ringelhan S (2013) The dynamics of perceptual rivalry in bistable and tristable perception. J Vis 13:1–21. doi:10.1167/13.2.24

    Article  Google Scholar 

  44. Wang M, Arteaga D, He BJ (2013) Brain mechanisms for simple perception and bistable perception. PNAS. doi:10.1073/pnas.1221945110

    Google Scholar 

  45. Wimmer K, Nykamp DQ, Constantinidis C, Compte A (2014) Bump attractor dynamics in prefrontal cortex explains behavioral precision in spatial working memory. Nat Neurosci 17(17):431–439. doi:10.1038/nn.3645

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by a Grant (PSI2014-57454-P) from the Spanish Government to H.S. The authors wish to thank Profs. Peter N. Loxley and Peter A. Robinson for valuable comments and observations and also the anonymous referees of the earlier versions of this work for their useful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans Supèr.

A Appendix: stability criterion

A Appendix: stability criterion

Stability is often studied by application of the Evans technique (see [10,11,12, 26] and refs therein), assuming that time-dependent deviations from the stationary solutions \(u_s(x)\), \(\theta _s(x)\) have the form

$$\begin{aligned} \left\{ \begin{array}{lll} u(x, t)&{}=&{}\displaystyle u_s(x)+\delta u(x) \, \hbox {e}^{\lambda t} \\ \theta (x, t)&{}=&{}\displaystyle \theta _s(x)+\delta \theta (x) \, \hbox {e}^{\lambda t} . \end{array} \right. \end{aligned}$$
(12)

where \(\delta u\), \(\delta \theta \) are regarded as small magnitudes. Inserting (3), (12) into (1), one can expand the resulting expressions to first order in \(\delta u\), \(\delta \theta \). Such an expansion is performed with the help of the formal rule \(\displaystyle {\delta \over \delta g(z)}\Theta \left( g(z) \right) = \delta _\mathrm{D}( g(z) )= {1 \over |g'(z)|} \delta _\mathrm{D}(z), \) valid inside integrals, where \(\delta _\mathrm{D}\) denotes Dirac’s delta. This procedure enables us to factor out the time dependence and obtain a set of \(4N_s\) equalities no longer t-dependent, just x-dependent. Next, we consider as specific x values the boundary points themselves

$$\begin{aligned} \left( x_1, x_2, \dots , x_{2N_s-1}, x_{2N_s} \right)= & {} \left( a_1-{m_1 \over 2}, a_1+{m_1 \over 2}, \dots ,\right. \nonumber \\&\left. a_{N_s} -{m_{N_s} \over 2}, a_{N_s}+{m_{N_s} \over 2} \right) .\nonumber \\ \end{aligned}$$
(13)

For the particular values \(x= x_i\), \(i=1,\dots , 2N_s\), those general equalities reduce to a set of equations which can be arranged into the form

$$\begin{aligned} \mathcal {M} \left( \begin{array}{c} \delta \vec {u} \\ \delta \vec {\theta } \end{array} \right) =\left( \begin{array}{c@{\quad }c} \widehat{\mathcal {D}}_f(\lambda ) \, I_{2N_s}-\mathcal {A}&{}\mathcal {A}\\ -\kappa I_{2N_s} &{} \widehat{\mathcal {D}}_s(\lambda ) \, I_{2N_s} \end{array} \right) \left( \begin{array}{c} \delta \vec {u} \\ \delta \vec {\theta } \end{array} \right) =0\nonumber \\ \end{aligned}$$
(14)

with

$$\begin{aligned} \begin{array}{lll} \delta \vec {u}= \left( \begin{array}{c} \delta u(x_1) \\ \vdots \\ \delta u(x_{2Ns}) \end{array} \right) &{} &{} \delta \vec {\theta }= \left( \begin{array}{c} \delta \theta (x_1) \\ \vdots \\ \delta \theta (x_{2Ns}) \end{array} \right) , \end{array} \end{aligned}$$
(15)

\(\widehat{\mathcal {D}}_f(\lambda )\equiv \tau _f\lambda +1\), \(\widehat{\mathcal {D}}_s(\lambda )\equiv \tau _s\lambda +1\). \(I_{2N_s}\) is the \(2N_s \times 2N_s\) identity matrix and \(\mathcal {A}\) is a \(2N_s \times 2N_s\) matrix with coefficients

$$\begin{aligned} \mathcal {A}_{ij}= {w(x_i-x_j)\over |u_s'(x_j)-\theta _s'(x_j) |} ,\quad 1 \le i,j \le 2 N_s, \end{aligned}$$
(16)

where the \(x_i\)’s and \(x_j\)’s are the region limits in the notation (13). The denominators are easily obtained from (3) which, after differentiation w.r.t. the only present argument, supply

$$\begin{aligned} \begin{array}{lll} u_s'(x_j)-\theta _s'(x_j)&{}=&{} (1-\kappa ) \, u_s'(x_j) \\ &{}=&{}\displaystyle (1-\kappa ) \, \sum _{r=1}^{N_s} \Big [ w\left( x_j-a_r+{m_r\over 2} \right) \\ &{}&{} -w\left( x_j-a_r-{m_r \over 2} \right) +h'(x_j) \Big ]. \end{array} \end{aligned}$$
(17)

Existence of nontrivial solutions to system (14) requires \(\det (\mathcal {M})= 0\). (This is often—perhaps not quite correctly—called ‘eigenvalue equation’ because, like in a true eigenvalue problem, the solutions are the different values of a scalar parameter which cause a determinant to vanish.) Further, by virtue of the block structure of \(\mathcal {M}\), its determinant amounts to

$$\begin{aligned} \det (\mathcal {M})= \det \left[ \widehat{\mathcal {D}}_f(\lambda ) \widehat{\mathcal {D}}_s(\lambda ) I_{2N_s} -(\widehat{\mathcal {D}}_s(\lambda )-\kappa ) \mathcal {A} \right] . \end{aligned}$$
(18)

Moreover, for \(\widehat{\mathcal {D}}_s(\lambda )-\kappa \ne 0\), it is possible to divide by \(\widehat{\mathcal {D}}_s(\lambda )-\kappa \) and, doing as the authors of Ref. [26] did, we can just study the zeros of the following Evans function

$$\begin{aligned} \mathcal {E}(\lambda )= \det \left( {\widehat{\mathcal {D}}_f(\lambda ) \widehat{\mathcal {D}}_s(\lambda )\over \widehat{\mathcal {D}}_s(\lambda )-\kappa } I_{2N_s} -\mathcal {A} \right) . \end{aligned}$$
(19)

In the ‘Evans sense’, stability of the \(u_s\), \(\theta _s\) solutions requires that all the \(\lambda \)’s satisfying \(\mathcal {E}(\lambda )= 0\) have Re\((\lambda ) < 0\). This criterion is easy to understand by recalling the form of the Ansatz (12) and realizing how the character of \(\lambda \) determines the qualitative nature of the deviations of u and \(\theta \) from \(u_s\) and \(\theta _s\), respectively.

Note that by (19) and relations (16), (17), the Evans function \(\mathcal {E}(\lambda )\) depends, through the presence of the \(\mathcal {A}\) matrix, on the form of the particular h(x), \(h'(x)\). Furthermore, because this matrix also depends directly on the found centres and widths—the \(a_i\), \(m_i\), \(1 \le i \le N_i\)—the shape of every possible Evans function is determined by these particular values as well.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Romeo, A., Supèr, H. ‘Two vs one’ rivalry by the Loxley–Robinson model. Biol Cybern 111, 405–420 (2017). https://doi.org/10.1007/s00422-017-0734-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00422-017-0734-x

Keywords

Navigation