Biological Cybernetics

, Volume 111, Issue 2, pp 165–183 | Cite as

You cannot speak and listen at the same time: a probabilistic model of turn-taking

  • Francesco Donnarumma
  • Haris Dindo
  • Pierpaolo Iodice
  • Giovanni Pezzulo
Original Article

Abstract

Turn-taking is a preverbal skill whose mastering constitutes an important precondition for many social interactions and joint actions. However, the cognitive mechanisms supporting turn-taking abilities are still poorly understood. Here, we propose a computational analysis of turn-taking in terms of two general mechanisms supporting joint actions: action prediction (e.g., recognizing the interlocutor’s message and predicting the end of turn) and signaling (e.g., modifying one’s own speech to make it more predictable and discriminable). We test the hypothesis that in a simulated conversational scenario dyads using these two mechanisms can recognize the utterances of their co-actors faster, which in turn permits them to give and take turns more efficiently. Furthermore, we discuss how turn-taking dynamics depend on the fact that agents cannot simultaneously use their internal models for both action (or messages) prediction and production, as these have different requirements—or, in other words, they cannot speak and listen at the same time with the same level of accuracy. Our results provide a computational-level characterization of turn-taking in terms of cognitive mechanisms of action prediction and signaling that are shared across various interaction and joint action domains.

Keywords

Turn-taking Action prediction Signaling Dialogue Joint action 

References

  1. 1.
    Bell A, Jurafsky D, Fosler-Lussier E, Girand C, Gregory M, Gildea D (2003) Effects of disfluencies, predictability, and utterance position on word form variation in english conversation. The Journal of the Acoustical Society of America 113(2):1001–1024CrossRefPubMedGoogle Scholar
  2. 2.
    Berkes P, Orban G, Lengyel M, Fiser J (2011) Spontaneous cortical activity reveals hallmarks of an optimal internal model of the environment. Science 331(6013):83–87. doi:10.1126/science.1195870 CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Bishop CM (2006) Pattern Recognition and Machine Learning. SpringerGoogle Scholar
  4. 4.
    Brand RJ, Baldwin DA, Ashburn LA (2002) Evidence for motionese: modifications in mothers’ infant-directed action. Developmental Science 5(1):72–83. doi:10.1111/1467-7687.00211 CrossRefGoogle Scholar
  5. 5.
    Brand RJ, Shallcross WL (2008) Infants prefer motionese to adult-directed action. Dev Sci 11(6):853–861. doi:10.1111/j.1467-7687.2008.00734.x CrossRefPubMedGoogle Scholar
  6. 6.
    Brown PM, Dell GS (1987) Adapting production to comprehension: The explicit mention of instruments. Cognitive Psychology 19(4):441–472CrossRefGoogle Scholar
  7. 7.
    Buesing L, Bill J, Nessler B, Maass W (2011) Neural dynamics as sampling: a model for stochastic computation in recurrent networks of spiking neurons. PLoS Comput Biol 7(11):e1002,211CrossRefGoogle Scholar
  8. 8.
    Butz MV (2016) Toward a Unified Sub-symbolic Computational Theory of Cognition. Front Psychol 7:925. doi:10.3389/fpsyg.2016.00925
  9. 9.
    Candidi M, Curioni A, Donnarumma F, Sacheli LM, Pezzulo G (2015) Interactional leader-follower sensorimotor communication strategies during repetitive joint actions. J Royal Soc Interface 12(110). doi:10.1098/rsif.2015.0644
  10. 10.
    Casillas M (2014) Turn-taking. In: Pragmatic development in first language acquisition, pp. 53–70. BenjaminsGoogle Scholar
  11. 11.
    Chatzis SP, Demiris Y (2011) Echo state gaussian process. IEEE Trans Neural Netw 22(9):1435–1445. doi:10.1109/TNN.2011.2162109 CrossRefPubMedGoogle Scholar
  12. 12.
    Cisek P, Kalaska JF (2005) Neural correlates of reaching decisions in dorsal premotor cortex: specification of multiple direction choices and final selection of action. Neuron 45(5):801–814CrossRefPubMedGoogle Scholar
  13. 13.
    Cisek P, Kalaska JF (2010) Neural mechanisms for interacting with a world full of action choices. Annu Rev Neurosci 33:269–298. doi:10.1146/annurev.neuro.051508.135409 CrossRefPubMedGoogle Scholar
  14. 14.
    Clark HH (1996) Using Language. Cambridge University PressGoogle Scholar
  15. 15.
    Clark HH, Murphy GL (1982) Audience Design in Meaning and Reference. In: J.F. LeNy, W. Kintsch (eds.) Language and Comprehension, Advances in Psychology, vol. 9, pp. 287–299. North-Holland, Amsterdam (1982). doi:10.1016/s0166-4115(09)60059-5
  16. 16.
    Csibra G, Gergely G (2009) Natural pedagogy. Trends Cogn Sci 13(4):148–153. doi:10.1016/j.tics.2009.01.005 CrossRefPubMedGoogle Scholar
  17. 17.
    D’Ausilio A, Badino L, Li Y, Tokay S, Craighero L, Canto R, Aloimonos Y, Fadiga L (2012) Leadership in orchestra emerges from the causal relationships of movement kinematics. PLoS One 7(5):e35,757. doi:10.1371/journal.pone.0035757 CrossRefGoogle Scholar
  18. 18.
    De Ruiter JP, Mitterer H, Enfield NJ (2006) Projecting the end of a speaker’s turn: A cognitive cornerstone of conversation. Language 82(3):515–535CrossRefGoogle Scholar
  19. 19.
    Demiris Y, Khadhouri B (2005) Hierarchical attentive multiple models for execution and recognition (hammer). Robotics and Autonomous Systems Journal 54:361–369CrossRefGoogle Scholar
  20. 20.
    Dindo H, Donnarumma F, Chersi F, Pezzulo G (2015) The intentional stance as structure learning: a computational perspective on mindreading. Biol Cybern 109(4–5):453–467. doi:10.1007/s00422-015-0654-6 CrossRefPubMedGoogle Scholar
  21. 21.
    Dindo H, Zambuto D, Pezzulo G (2011) Motor simulation via coupled internal models using sequential monte carlo. Proceedings of IJCAI 2011:2113–2119Google Scholar
  22. 22.
    Donnarumma F, Costantini M, Ambrosini E, Friston K, Pezzulo G (2017) Action perception as hypothesis testing. Cortex 89:45–60. doi:10.1016/j.cortex.2017.01.016
  23. 23.
    Donnarumma F, Dindo H, Pezzulo G (2017) Sensorimotor coarticulation in the execution and recognition of intentional actions. Front Psychol 8:237. doi:10.3389/fpsyg.2017.00237
  24. 24.
    Donnarumma F, Maisto D, Pezzulo G (2016) Problem solving as probabilistic inference with subgoaling: Explaining human successes and pitfalls in the tower of hanoi. PLoS Comput Biol 12(4):e1004,864. doi:10.1371/journal.pcbi.1004864 CrossRefGoogle Scholar
  25. 25.
    Donnarumma F, Prevete R, Chersi F, Pezzulo G (2015) A Programmer-Interpreter neural network architecture for prefrontal cognitive control. J Neural System 25(6):1550017. doi:10.1142/S0129065715500173
  26. 26.
    Doucet A, De Freitas N, Gordon N (2001) An introduction to sequential monte carlo methods. In: Sequential Monte Carlo methods in practice, pp. 3–14. SpringerGoogle Scholar
  27. 27.
    Doucet A, Godsill S, Andrieu C (2000) On sequential monte carlo sampling methods for bayesian filtering. Statistics and computing 10(3):197–208CrossRefGoogle Scholar
  28. 28.
    Doya K, Ishii S, Pouget A, Rao RPN (eds) (2007) Bayesian Brain: Probabilistic Approaches to Neural Coding, 1st edn. The MIT PressGoogle Scholar
  29. 29.
    Duncan S (1972) Some signals and rules for taking speaking turns in conversations. Journal of personality and social psychology 23(2):283Google Scholar
  30. 30.
    Ferreira VS, Dell GS (2000) Effect of ambiguity and lexical availability on syntactic and lexical production. Cognitive psychology 40(4):296–340CrossRefPubMedGoogle Scholar
  31. 31.
    Fiser J, Berkes P, Orbán G, Lengyel M (2010) Statistically optimal perception and learning: from behavior to neural representations. Trends Cogn Sci 14(3):119–130. doi:10.1016/j.tics.2010.01.003 CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Flanagan JR, Vetter P, Johansson RS, Wolpert DM (2003) Prediction precedes control in motor learning. Curr Biol 13(2):146–150CrossRefPubMedGoogle Scholar
  33. 33.
    Frank MC, Goodman ND, Tenenbaum JB (2009) Using speakers’ referential intentions to model early cross-situational word learning. Psychological Science 20(5):578–585. doi:10.1111/j.1467-9280.2009.02335.x CrossRefPubMedGoogle Scholar
  34. 34.
    Friston K (2008) Hierarchical models in the brain. PLoS Computational Biology 4(11):e1000,211CrossRefGoogle Scholar
  35. 35.
    Friston K (2010) The free-energy principle: a unified brain theory? Nat Rev Neurosci 11(2):127–138. doi:10.1038/nrn2787 CrossRefPubMedGoogle Scholar
  36. 36.
    Friston K, FitzGerald T, Rigoli F, Schwartenbeck P, O’Doherty J, Pezzulo G (2016) Active inference and learning. Neurosci Biobehav Rev 68:862–879. doi:10.1016/j.neubiorev.2016.06.022
  37. 37.
    Friston K, FitzGerald T, Rigoli F, Schwartenbeck P, Pezzulo G (2016) Active inference: A process theory. Neural Comput 29(1):1–49 doi:10.1162/NECO_a_00912
  38. 38.
    Friston K, Frith C (2015) A duet for one. Consciousness and cognitionGoogle Scholar
  39. 39.
    Friston K, Mattout J, Kilner J (2011) Action understanding and active inference. Biol Cybern 104(1–2):137–160. doi:10.1007/s00422-011-0424-z CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Friston KJ, Daunizeau J, Kilner J, Kiebel SJ (2010) Action and behavior: a free-energy formulation. Biol Cybern 102(3):227–260. doi:10.1007/s00422-010-0364-z CrossRefPubMedGoogle Scholar
  41. 41.
    Friston KJ, Frith CD (2015) Active inference, communication and hermeneutics. Cortex 68, 129-143. http://dx.doi.org/10.1016/j.cortex.2015.03.025
  42. 42.
    Gambi C, Pickering MJ (2011) A cognitive architecture for the coordination of utterances. Front Psychol 2:275. doi:10.3389/fpsyg.2011.00275 CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Garrod S, Pickering MJ (2004) Why is conversation so easy? Trends Cogn Sci 8(1):8–11CrossRefPubMedGoogle Scholar
  44. 44.
    Garrod S, Pickering MJ (2015) The use of content and timing to predict turn transitions. Frontiers in psychology 6:751CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Glenberg AM, Gallese V (2011) Action-based language: A theory of language acquisition, comprehension, and production. Cortex 48(7):905–922. doi:10.1016/j.cortex.2011.04.010 CrossRefPubMedGoogle Scholar
  46. 46.
    Heldner M (2011) Detection thresholds for gaps, overlaps, and no-gap-no-overlaps. J Acoust Soc Am 130(1):508–513CrossRefPubMedGoogle Scholar
  47. 47.
    Heldner M, Edlund J (2010) Pauses, gaps and overlaps in conversations. Journal of Phonetics 38(4):555–568CrossRefGoogle Scholar
  48. 48.
    Heldner M, Edlund J, Hjalmarsson A, Laskowski K (2011) Very short utterances and timing in turn-taking. In: INTERSPEECH, pp. 2837–2840Google Scholar
  49. 49.
    von Hofsten C (2004) An action perspective on motor development. Trends in Cognitive Science 8(6):266–272CrossRefGoogle Scholar
  50. 50.
    Ivry RB, Richardson TC (2002) Temporal control and coordination: the multiple timer model. Brain and cognition 48(1):117–132CrossRefPubMedGoogle Scholar
  51. 51.
    Jaffe J, Beebe B, Feldstein S, Crown CL, Jasnow MD, Rochat P, Stern DN (2001) Rhythms of dialogue in infancy: Coordinated timing in development. Monographs of the society for research in child development pp. i–149Google Scholar
  52. 52.
    Jeannerod M (2006) Motor Cognition. Oxford University PressGoogle Scholar
  53. 53.
    Jerde TE, Soechting JF, Flanders M (2003) Coarticulation in fluent fingerspelling. J Neurosci 23(6):2383–2393PubMedGoogle Scholar
  54. 54.
    Jonsdottir GR, Thorisson KR, Nivel E (2008) Learning smooth, human-like turntaking in realtime dialogue. In: In Proceedings of Intelligent Virtual Agents (IVA 08, pp. 162–175. SpringerGoogle Scholar
  55. 55.
    Kawato M (1999) Internal models for motor control and trajectory planning. Current Opinion in Neurobiology 9:718–27CrossRefPubMedGoogle Scholar
  56. 56.
    Keitel A, Daum MM (2015) The use of intonation for turn anticipation in observed conversations without visual signals as source of information. Front Psychol 6:108. doi:10.3389/fpsyg.2015.00108 CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Keller PE, Knoblich G, Repp BH (2007) Pianists duet better when they play with themselves: on the possible role of action simulation in synchronization. Conscious Cogn 16(1):102–111. doi:10.1016/j.concog.2005.12.004 CrossRefPubMedGoogle Scholar
  58. 58.
    Kilner J, Paulignan Y, Blakemore S (2003) An interference effect of observed biological movement on action. Current Biology 13:522–525CrossRefPubMedGoogle Scholar
  59. 59.
    Kilner JM, Friston KJ, Frith CD (2007) Predictive coding: An account of the mirror neuron system. Cognitive Processing 8(3):159–166CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Kording K, Wolpert D (2006) Bayesian decision theory in sensorimotor control. Trends Cogn. Sci. 10:319–326CrossRefPubMedGoogle Scholar
  61. 61.
    Kose-Bagci H, Dautenhahn K, Nehaniv CL (2008) Emergent dynamics of turn-taking interaction in drumming games with a humanoid robot. In: Robot and Human Interactive Communication, 2008. RO-MAN 2008. The 17th IEEE International Symposium on, pp. 346–353. IEEEGoogle Scholar
  62. 62.
    Kroger BJ, Kopp S, Lowit A (2009) A model for production, perception, and acquisition of actions in face-to-face communication. Cogn Process. doi:10.1007/s10339-009-0351-2
  63. 63.
    Kuhl PK, Andruski JE, Chistovich IA, Chistovich LA, Kozhevnikova EV, Ryskina VL, Stolyarova EI, Sundberg U, Lacerda F (1997) Cross-language analysis of phonetic units in language addressed to infants. Science 277(5326):684–686CrossRefPubMedGoogle Scholar
  64. 64.
    Leibfried F, Grau-Moya J, Braun DA (2015) Signaling equilibria in sensorimotor interactions. Cognition 141, 73–86. http://dx.doi.org/10.1016/j.cognition.2015.03.008
  65. 65.
    Levinson SC (2006) On the human “interaction engine”. In: Enfield NJ, Levinson SC (eds) Roots of human sociality: Culture, cognition and interaction. Berg, Oxford, pp 39–69Google Scholar
  66. 66.
    Levinson SC (2016) Turn-taking in human communication-origins and implications for language processing. Trends in cognitive sciences 20(1):6–14CrossRefPubMedGoogle Scholar
  67. 67.
    Lieberman P (1963) Some effects of semantic and grammatical context on the production and perception of speech. Language and speech 6(3):172–187Google Scholar
  68. 68.
    Lindblom B (1990) Explaining phonetic variation: A sketch of the h&h theory. In: Speech production and speech modelling, pp. 403–439. SpringerGoogle Scholar
  69. 69.
    Magyari L, de Ruiter JP (2012) Prediction of turn-ends based on anticipation of upcoming words. Front Psychol 3:376. doi:10.3389/fpsyg.2012.00376 CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Maisto D, Donnarumma F, Pezzulo G (2016) Nonparametric problem-space clustering: Learning efficient codes for cognitive control tasks. Entropy 18(2):61CrossRefGoogle Scholar
  71. 71.
    Moore RK (2007) Presence: A human-inspired architecture for speech-based human-machine interaction. IEEE Trans. Computers 56(9):1176–1188CrossRefGoogle Scholar
  72. 72.
    Mörtl A, Lorenz T, Vlaskamp BN, Gusrialdi A, Schubö A, Hirche S (2012) Modeling inter-human movement coordination: synchronization governs joint task dynamics. Biological Cybernetics 106(4–5):241–259. doi:10.1007/s00422-012-0492-8 CrossRefPubMedGoogle Scholar
  73. 73.
    Murphy KP (2002) Dynamic bayesian networks: representation, inference and learning. Ph.D. thesis, UC Berkeley, Computer Science DivisionGoogle Scholar
  74. 74.
    Noordzij ML, Newman-Norlund SE, de Ruiter JP, Hagoort P, Levinson SC, Toni I (2009) Brain mechanisms underlying human communication. Front Hum Neurosci 3:14. doi:10.3389/neuro.09.014.2009 CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Noordzij ML, Newman-Norlund SE, de Ruiter JP, Hagoort P, Levinson SC, Toni I (2010) Neural correlates of intentional communication. Front Neurosci 4:188. doi:10.3389/fnins.2010.00188 CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Ognibene D, Demiris Y (2013) Towards active event perception. In: Proceedings of the 23rd International Joint Conference of Artificial Intelligence (IJCAI 2013)Google Scholar
  77. 77.
    Ortega PA, Braun DA (2013) Thermodynamics as a theory of decision-making with information-processing costs. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Science 469(2153)Google Scholar
  78. 78.
    Pezzulo G (2011) Shared representations as coordination tools for interactions. Review of Philosophy and Psychology 2(2):303–333CrossRefGoogle Scholar
  79. 79.
    Pezzulo G (2012) The interaction engine: a common pragmatic competence across linguistic and non-linguistic interactions. IEEE Transactions on Autonomous Mental Development 4(2):105–123CrossRefGoogle Scholar
  80. 80.
    Pezzulo G (2013) Studying mirror mechanisms within generative and predictive architectures for joint action. Cortex 49:2968–2969CrossRefPubMedGoogle Scholar
  81. 81.
    Pezzulo G (2017) Tracing the roots of cognition in predictive processing. In: Metzinger T, Wiese W (Eds) Philosophy and Predictive Processing: 20. Frankfurt am Main: MIND GroupGoogle Scholar
  82. 82.
    Pezzulo G, Cisek P (2016) Navigating the affordance landscape: Feedback control as a process model of behavior and cognition. Trends Cogn Sci 20(6):414–424. doi:10.1016/j.tics.2016.03.013 CrossRefPubMedGoogle Scholar
  83. 83.
    Pezzulo G, Dindo H (2011) What should i do next? using shared representations to solve interaction problems. Experimental Brain Research 211(3):613–630CrossRefPubMedGoogle Scholar
  84. 84.
    Pezzulo G, Dindo H (2013) Intentional strategies that make co-actors more predictable: the case of signaling. Behavioral and Brain Sciences 36(4):43–44CrossRefGoogle Scholar
  85. 85.
    Pezzulo G, Donnarumma F, Dindo H (2013) Human sensorimotor communication: A theory of signaling in online social interactions. PLoS ONE 8(11):e79,876CrossRefGoogle Scholar
  86. 86.
    Pezzulo G, Iodice P, Donnarumma F, Dindo H, Knoblich G (2017) Avoiding accidents at the champagne reception: A study of joint lifting and balancing. Psychol Sci. doi:10.1177/0956797616683015
  87. 87.
    Pezzulo G, Iodice P, Ferraina S, Kessler K (2013) Shared action spaces: a basis function framework for social re-calibration of sensorimotor representations supporting joint action. Front Hum Neurosci 7:800. doi:10.3389/fnhum.2013.00800 CrossRefPubMedPubMedCentralGoogle Scholar
  88. 88.
    Pickering MJ, Garrod S (2007) Do people use language production to make predictions during comprehension? Trends in Cognitive Sciences 11(3):105–110CrossRefPubMedGoogle Scholar
  89. 89.
    Pickering MJ, Garrod S (2013) An integrated theory of language production and comprehension. Behavioral and Brain SciencesGoogle Scholar
  90. 90.
    Pulvermüller F, Fadiga L (2010) Active perception: sensorimotor circuits as a cortical basis for language. Nature Reviews Neuroscience 11(5):351–360CrossRefPubMedGoogle Scholar
  91. 91.
    Revel A, Andry P (2009) Emergence of structured interactions: From a theoretical model to pragmatic robotics. Neural networks 22(2):116–125CrossRefPubMedGoogle Scholar
  92. 92.
    Sacheli LM, Tidoni E, Pavone EF, Aglioti SM, Candidi M (2013) Kinematics fingerprints of leader and follower role-taking during cooperative joint actions. Exp Brain Res. doi:10.1007/s00221-013-3459-7
  93. 93.
    Sacks H, Schegloff EA, Jefferson G (1974) A simplest systematics for the organisation of turn-taking for conversation. Language 50:696–735CrossRefGoogle Scholar
  94. 94.
    Sanborn AN (2015) Types of approximation for probabilistic cognition: sampling and variational. Brain and cognitionGoogle Scholar
  95. 95.
    Sanborn AN, Chater N (2016) Bayesian brains without probabilities. Trends in Cognitive Sciences 20(12):883–893CrossRefPubMedGoogle Scholar
  96. 96.
    Schegloff EA (2006) Interaction: The infrastructure for social institutions, the natural ecological niche for language, and the arena in which culture is enacted. In: Enfield NJ, Levinson SC (eds) Roots of Human Sociality: Culture. Cognition and Interaction. Oxford, BergGoogle Scholar
  97. 97.
    Sebanz N, Bekkering H, Knoblich G (2006) Joint action: bodies and minds moving together. Trends Cogn Sci 10(2):70–76. doi:10.1016/j.tics.2005.12.009 CrossRefPubMedGoogle Scholar
  98. 98.
    Sebanz N, Knoblich G (2009) Prediction in joint action: What, when, and where. Topics in Cognitive Science 1:353–367CrossRefPubMedGoogle Scholar
  99. 99.
    Shafto P, Goodman ND, Griffiths TL (2014) A rational account of pedagogical reasoning: teaching by, and learning from, examples. Cogn Psychol 71:55–89. doi:10.1016/j.cogpsych.2013.12.004 CrossRefPubMedGoogle Scholar
  100. 100.
    Stivers T, Enfield NJ, Brown P, Englert C, Hayashi M, Heinemann T, Hoymann G, Rossano F, de Ruiter JP, Yoon KE, Levinson SC (2009) Universals and cultural variation in turn-taking in conversation. Proc Natl Acad Sci U S A 106(26):10587–10592. doi:10.1073/pnas.0903616106 CrossRefPubMedPubMedCentralGoogle Scholar
  101. 101.
    Stoianov I, Genovesio A, Pezzulo G (2016) Prefrontal goal-codes emerge as latent states in probabilistic value learning. Journal of Cognitive Neuroscience 28(1):140–157CrossRefPubMedGoogle Scholar
  102. 102.
    Tenenbaum JB, Kemp C, Griffiths TL, Goodman ND (2011) How to grow a mind: statistics, structure, and abstraction. Science 331(6022):1279–1285. doi:10.1126/science.1192788 CrossRefPubMedGoogle Scholar
  103. 103.
    Thorisson KR (2002) Multimodality in language and speech systems. In: B. Granström, D. House, I. Karlsson (eds.) Multimodality in Language and Speech Systems, chap. Natural turn-taking needs no manual: computational theory and model, from perception to actions, pp. 173–207. Kluwer Academic Publishers, Dordrecht, The Netherlands. http://xenia.media.mit.edu/%7Ekris/ftp/CompModTurnTak
  104. 104.
    Vesper C, Richardson MJ (2014) Strategic communication and behavioral coupling in asymmetric joint action. Exp Brain Res. doi:10.1007/s00221-014-3982-1
  105. 105.
    Vesper C, van der Wel RPRD, Knoblich G, Sebanz N (2011) Making oneself predictable: reduced temporal variability facilitates joint action coordination. Exp Brain Res 211(3–4):517–530. doi:10.1007/s00221-011-2706-z CrossRefPubMedPubMedCentralGoogle Scholar
  106. 106.
    Vul E, Goodman N, Griffiths TL, Tenenbaum JB (2014) One and done? optimal decisions from very few samples. Cognitive science 38(4):599–637CrossRefPubMedGoogle Scholar
  107. 107.
    Warlaumont AS, Richards JA, Gilkerson J, Oller DK (2014) A social feedback loop for speech development and its reduction in autism. Psychological science p. 0956797614531023Google Scholar
  108. 108.
    Wilson M, Wilson TP (2005) An oscillator model of the timing of turn-taking. Psychon Bull Rev 12(6):957–968CrossRefPubMedGoogle Scholar
  109. 109.
    Wlodarczak M, Simko J, Wagner P (2013) Pitch and duration as a basis for entrainment of overlapped speech onsets. Proceedings of Interspeech 2013Google Scholar
  110. 110.
    Wolpert DM, Doya K, Kawato M (2003) A unifying computational framework for motor control and social interaction. Philos Trans R Soc Lond B Biol Sci 358(1431):593–602. doi:10.1098/rstb.2002.1238 CrossRefPubMedPubMedCentralGoogle Scholar
  111. 111.
    Wolpert DM, Kawato M (1998) Multiple paired forward and inverse models for motor control. Neural Networks 11(7–8):1317–1329CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Francesco Donnarumma
    • 1
  • Haris Dindo
    • 2
  • Pierpaolo Iodice
    • 1
  • Giovanni Pezzulo
    • 1
  1. 1.Institute of Cognitive Sciences and TechnologiesNational Research CouncilRomeItaly
  2. 2.RoboticsLab, Polytechnic School (DICGIM)University of PalermoPalermoItaly

Personalised recommendations