Skip to main content
Log in

K-complexes, spindles, and ERPs as impulse responses: unification via neural field theory

  • Original Article
  • Published:
Biological Cybernetics Aims and scope Submit manuscript

Abstract

To interrelate K-complexes, spindles, evoked response potentials (ERPs), and spontaneous electroencephalography (EEG) using neural field theory (NFT), physiology-based NFT of the corticothalamic system is used to model cortical excitatory and inhibitory populations and thalamic relay and reticular nuclei. The impulse response function of the model is used to predict the responses to impulses, which are compared with transient waveforms in sleep studies. Fits to empirical data then allow underlying brain physiology to be inferred and compared with other waves. Spontaneous K-complexes, spindles, and other transient waveforms can be reproduced using NFT by treating them as evoked responses to impulsive stimuli with brain parameters appropriate to spontaneous EEG in sleep stage 2. Using this approach, spontaneous K-complexes and sleep spindles can be analyzed using the same single theory as previously been used to account for waking ERPs and other EEG phenomena. As a result, NFT can explain a wide variety of transient waveforms that have only been phenomenologically classified to date. This enables noninvasive fitting to be used to infer underlying physiological parameters. This physiology-based model reproduces the time series of different transient EEG waveforms; it has previously reproduced experimental EEG spectra, and waking ERPs, and many other observations, thereby unifying transient sleep waveforms with these phenomena.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Abeysuriya RG, Rennie CJ, Robinson PA (2015) Physiologically based arousal state estimation and dynamics. J Neurosci Methods 253:55–69

    Article  CAS  PubMed  Google Scholar 

  2. Abeysuriya RG, Rennie CJ, Robinson PA, Kim JW (2014) Experimental observation of a theoretically predicted nonlinear sleep spindle harmonic in human EEG. Clin Neurophysiol 125:2016–2023

    Article  CAS  PubMed  Google Scholar 

  3. Abeysuriya RG, Rennie CJ, Robinson PA (2014) Prediction and verification of nonlinear sleep spindle harmonic oscillations. J Theor Biol 344:70–77

    Article  CAS  PubMed  Google Scholar 

  4. Afifi L, Guilleminault C (2003) Colrain IM Sleep and respiratory stimulus specific dampening of cortical responsiveness in OSAS. Respir Physiol Neurobiol 136:221–234

    Article  PubMed  Google Scholar 

  5. Amzica F, Steriade M (2002) The functional significance of K-complexes. Sleep Med Rev 6:139–149

    Article  PubMed  Google Scholar 

  6. Amzica F, Steriade M (1998) Cellular substrates and laminar profile of sleep K-complex. Neuroscience 82:671–686

    Article  CAS  PubMed  Google Scholar 

  7. Amzica F (1997) Steriade M The K-complex: its slow (\(<\)1-Hz) rhythmicity and relation to delta waves. Neurology 49:952–959

    Article  CAS  PubMed  Google Scholar 

  8. Barlow JS (1957) An electronic method for detecting evoked responses of the brain and for reporting their average wave forms. Electroencephalogr Clin Neurophysiol 9:340–343

    Article  CAS  PubMed  Google Scholar 

  9. Basar E (1980) EEG-brain dynamics: relation between EEG and brain evoked potentials. Elsevier, New York

    Google Scholar 

  10. Breakspear M, Roberts JA, Terry JR, Rodrigues S, Mahant N, Robinson PA (2006) A unifying explanation of primary generalized seizures through nonlinear brain modeling and bifurcation analysis. Cereb Cortex 16:1296–1313

    Article  CAS  PubMed  Google Scholar 

  11. Cantero JL, Atienza M, Stickgold R, Kahana MJ, Madsen JR, Kocsis B (2003) Sleep-dependent theta oscillations in the human hippocampus and neocortex. J Neurosci 23:10897–10903

    CAS  PubMed  Google Scholar 

  12. Cash SS, Halgren E, Dehghani N, Rossetti AO, Thesen T, Wang C, Devinsky O, Kuzniecky R, Doyle W, Madsen JR, Bromfield E, Eross L, Halasz P, Karmos G, Csercsa R, Wittner L, Ulbert I (2009) The human K-complex represents an isolated cortical down-state. Science 324:1084–1087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ciganek L (1961) The EEG response (evoked potential) to light stimulus in man. Electroencephalogr Clin Neurophysiol 13:165–172

    Article  CAS  PubMed  Google Scholar 

  14. Clearwater JM, Kerr CC, Rennie CJ, Robinson PA (2008) Neural mechanisms of ERP change: combining insights from electrophysiology and mathematical modeling. J Integr Neurosci 7:529–550

    Article  CAS  PubMed  Google Scholar 

  15. Colrain IM (2005) The K-complex: A 7-decade history. Sleep 28:255–273

    PubMed  Google Scholar 

  16. Contreras D, Destexhe A, Sejnowski TJ, Steriade M (1997) Spatiotemporal patterns of spindle oscillations in cortex and thalamus. J Neurosci 17:1179–1196

    CAS  PubMed  Google Scholar 

  17. Creutzfeldt OD, Watanabe S, Lux HD (1966) Relations between EEG phenomena and potentials of single cortical cells. I. Evoked responses after thalamic and epicortical stimulation. Electroencephalogr Clin Neurophysiol 20:1–18

    Article  CAS  PubMed  Google Scholar 

  18. Crowley K, Trinder J, Kim Y, Carrington M, Colrai MI (2002) The effects of normal aging on sleep spindle and K-complex production. Clin Neurophysiol 113:1615–1622

    Article  PubMed  Google Scholar 

  19. Davis H, Davis PA, Loomis AL, Harvery EN, Hovert G (1939) Electrical reactions of the human brain to auditory stimulation during sleep. J Neurophysiol 2:500–514

    Google Scholar 

  20. Deco G, Jirsa VK, Robinson PA, Breakspear M, Friston K (2008) The dynamic brain: from spiking neurons to neural masses and cortical fields. PLoS Comput Biol 4:e1000092

    Article  PubMed  PubMed Central  Google Scholar 

  21. Dement W, Kleitman N (1957) Cyclic variations in EEG during sleep and their relation to eye movements, body motility and dreaming. Electroencephalogr Clin Neurophysiol 9:673–690

    Article  CAS  PubMed  Google Scholar 

  22. Dijk DJ, Brunner DP, Borbely AA (1990) Time course of EEG power density during long sleep in humans. Am J Physiol 258:R650–R661

    CAS  PubMed  Google Scholar 

  23. Dijk DJ, Hayes B, Czeisler CA (1993) Dynamics of electroencephalographic sleep spindles and slow wave activity in men: effect of sleep deprivation. Brain Res 626:190–199

    Article  CAS  PubMed  Google Scholar 

  24. Freeman WJ (1975) Mass action in the nervous system. Academic Press, New York

    Google Scholar 

  25. Fushimi M, Niiyama Y, Fujiwara R, Satoh N, Hishikawa Y (1998) Some sensory stimuli generate spontaneous K-complexes. Psychiatry Clin Neurosci 52:150–152

    Article  CAS  PubMed  Google Scholar 

  26. Gennaro LD, Ferrara M, Bertini M (2000) The spontaneous K-complex during stage 2 sleep: Is it the ‘forerunner’ of delta waves? Neurosci Lett 291:41–43

    Article  PubMed  Google Scholar 

  27. Gennaro LD, Ferrara M (2003) Sleep spindles: an overview. Sleep Med Rev 7:423–440

    Article  PubMed  Google Scholar 

  28. Gordon E, Cooper N, Rennie C, Hermens D, Williams LM (2005) Integrative neuroscience: the role of a standardized database. Clin EEG Neurosci 36:64–75

    Article  CAS  PubMed  Google Scholar 

  29. Gray RT, Robinson PA (2013) Stability constraints on large-scale structural brain networks. Front Comput Neurosci 7:1–13

    Article  Google Scholar 

  30. Halasz P, Pal I, Rajna P (1985) K-complex formation of the EEG in sleep. A survey and new examinations. Acta Physiol Hung 65:3–35

    CAS  PubMed  Google Scholar 

  31. Halasz P (2005) K-complex, a reactive EEG graphoelement of NREM sleep: an old chap in a new garment. Sleep Med Rev 9:391–412

    Article  PubMed  Google Scholar 

  32. Harsh J, Voss U, Hull J, Schrepfer S, Badia P (1994) ERP and behavioralchanges during the wake/sleep transition. Psychophysiology 3:52–244

    Google Scholar 

  33. Hayek, SI (2003) Mechanical vibration and damping. Encyclopedia of applied physics, WILEY-VCH Verlag GmbH and Co KGaA, Germany

  34. Henderson JA, Robinson PA (2011) Geometric effects on complex network structure in the cortex. Phys Rev Lett 107:018102

    Article  CAS  PubMed  Google Scholar 

  35. Kerr CC, Rennie CJ, Robinson PA (2008) Physiology-based modelling of cortical auditory evoked potentials. Biol Cybern 98:171–184

    Article  CAS  PubMed  Google Scholar 

  36. Kerr CC, Rennie CJ, Robinson PA (2009) Deconvolution analysis of target evoked potentials. J Neurosci Methods 179:101–110

    Article  PubMed  Google Scholar 

  37. Kerr CC, Rennie CJ, Robinson PA (2011) Model-based analysis and quantification of age trends in auditory evoked potentials. Clin Neurophysiol 122:134–147

    Article  CAS  PubMed  Google Scholar 

  38. Kerr CC, Van Albada SJ, Neymotin SA, Chadderdon GL, Robinson PA, Lytton WW (2013) Cortical information flow in Parkinson’s disease: a composite network/field model. Front Comput Neurosci 7:1–14

    Article  Google Scholar 

  39. Kim JW, Robinson PA (2007) Compact dynamical model of brain activity. Phys Rev E 75:e031907

    Google Scholar 

  40. Koch C, Rapp M, Segev I (1996) A brief history of time (constants). Cereb Cortex 6:93–101

    Article  CAS  PubMed  Google Scholar 

  41. Kreith K (1973) Oscillation theory. In: Dold A, Eckmann B (eds) Lecture Notes in Mathematics. Springer, New York

  42. Lajnef T, Chaibi S, Eichenlaub J-B, Ruby PM, Aguera P-E, Samet M, Kachouri A, Jerbi K (2015) Sleep spindle and K-complex detection using tunable Q-factor wavelet transform and morphological component analysis. Front Hum Neurosci 9:1–17

    Article  Google Scholar 

  43. Liley DTJ, Bojak I, Dafilis MP, Veen LV, Frascoli F, Foster BL (2010) Bifurcations and state changes in the human alpha rhythm: theory and experiment. In Steyn-Ross DA, Steyn-Ross M (eds) Modeling phase transitions in the brain. Springer Series in Computational Neuroscience, France

  44. Loomis AL, Harvey EN, Hobart GA (1938) Distribution of disturbance patterns in the human electroencephalogram, with special reference to sleep. J Neurophysiol 13:231–256

    Google Scholar 

  45. Lopes da Silva FH, Hoeks A, Smits H, Zetterberg LH (1974) Model of brain rhythmic activity. Kybernetik 15:27–37

    Article  CAS  PubMed  Google Scholar 

  46. Lopes SF (1991) Neural mechanisms underlying brain waves: from neural membranes to networks. Electroencephalogr Clin Neurophysiol 79:81–93

    Article  Google Scholar 

  47. Mantini D, Perrucci MG, Del GC, Romani GL, Corbetta M (2007) Electrophysiological signatures of resting state networks in the human brain. Proc Natl Acad Sci USA 104:13170–13175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Maquet P (2010) Understanding non rapid eye movement sleep through neuroimaging. World J Biol Psychiatry 11:9–15

    Article  PubMed  Google Scholar 

  49. McCormick D, Bal T (1997) Sleep and arousal: thalamocortical mechanisms. Annu Rev Neurosci 20:185–215

    Article  CAS  PubMed  Google Scholar 

  50. Nicholas CL, Trinder J, Crowley KE (2006) The impact of slow wave sleep proximity on evoked K-complex generation. Neurosci Lett 404:127–131

    Article  CAS  PubMed  Google Scholar 

  51. Niedermeyer E, Lopes da Silva FH (2005) Electroencephalography: basic principles, clinical applications, and related fields. In: Niedermeyer E (ed) Medicine series, 5th edn. Lippincott Williams and Wilkins, Philadelphia

    Google Scholar 

  52. Niiyama Y, Fushimi M, Sekine A, Hishikawa Y (1995) K-complex evoked in NREM sleep is accompanied by a slow negative potential related to cognitive process. Electroencephalogr Clin Neurophysiol 95:27–33

    Article  CAS  PubMed  Google Scholar 

  53. Nordby H, Hugdahl K, Stickgold R, Bronnick KS, Hobson JA (1996) Event-related potentials (ERPs) to deviant auditory stimuli during sleep and waking. Neurosci Rep 7:1082–1086

    CAS  Google Scholar 

  54. Nunez PL, Srinivasan R (1981) Electric fields of the brain: the neurophysics of EEG. In: Nunez PL (ed) Oxford University Press, Oxford

  55. Nunez PL, Srinivasan R (1993) Implications of recording strategy for estimates of neocortical dynamics with electroencephalography. Clin Neurophysiol 3:257–266

    Google Scholar 

  56. Nunez PL, Srinivasan R (2006) A theoretical basis for standing and traveling brain waves measured with human EEG with implications for an integrated consciousness. Clin Neurophysiol 117:2424–2435

    Article  PubMed  PubMed Central  Google Scholar 

  57. O’Connor SC, Robinson PA (2004) Spatially uniform and nonuniform analyses of electroencephalographic dynamics, with application to the topography of the alpha rhythm. Phys Rev E 70:011911

    Article  CAS  Google Scholar 

  58. Olver FW, Lozier DW, Boisvert RF, Clark CW (2000) BNIST handbook of mathematical functions. Cambridge University Press, New York

    Google Scholar 

  59. Parekha A, Selesnickb IW, Rapoportc DM, Ayappac I (2015) Detection of K-complexes and sleep spindles (DETOKS) using sparse optimization. J Neurosci Methods 251:37–46

    Article  Google Scholar 

  60. Penny WD, Kiebel SJ, Kilner JM, Rugg MD (2002) Event-related brain dynamics. Trends Neurosci 25:387–389

    Article  CAS  PubMed  Google Scholar 

  61. Pfurtscheller G, Lopes da Silva F (1999) Event-related EEG/MEG synchronization and desynchronization: basic principles. Clin Neurophysiol 110:1842–1857

    Article  CAS  PubMed  Google Scholar 

  62. Regan DM (1966) Some characteristics of average steady-state and transient responses evoked by modulated light. Electroencephalogr Clin Neurophysiol 20:238–248

    Article  CAS  PubMed  Google Scholar 

  63. Regan DM (1979) Electrical responses evoked from the human brain. Sci Am 6:134–146

    Article  Google Scholar 

  64. Regan DM (1989) Human brain electrophysiology: evoked potentials and evoked magnetic fields in science and medicine. Elsevier, New York

    Google Scholar 

  65. Rennie CJ, Robinson PA, Wright JJ (1999) Effects of local feedback on dispersion of electrical waves in the cerebral cortex. Phys Rev E 59:3320–3329

    Article  CAS  Google Scholar 

  66. Rennie CJ, Robinson PA, Wright JJ (2002) Unifed neurophysical model of EEG spectra and evoked potentials. Biol Cybern 86:457–471

    Article  CAS  PubMed  Google Scholar 

  67. Richard C, Lengelle R (2008) Joint time and time-frequency optimal detection of K-complexes in sleep EEG. Comput Biomed Res 31:209–229

    Article  Google Scholar 

  68. Roberts JA, Robinson PA (2012) Corticothalamic dynamics: structure of parameter space, spectra, instabilities, and reduced model. Phys Rev E 85:011910

    Article  CAS  Google Scholar 

  69. Robinson PA, Rennie CJ, Wright JJ (1997) Propagation and stability of waves of electrical activity in the cerebral cortex. Phys Rev E 56:826–840

    Article  CAS  Google Scholar 

  70. Robinson PA, Wright JJ, Rennie CJ (1998) Synchronous oscillations in the cerebral cortex. Phys Rev E 57:4578–4588

    Article  CAS  Google Scholar 

  71. Robinson PA, Rennie CJ, Wright JJ, Bourke PD (1998) Steady states and global dynamics of electrical activity in the cerebral cortex. Phys Rev E 58:3557–3571

    Article  CAS  Google Scholar 

  72. Robinson PA, Loxley PN, O’Connor SC, Rennie CJ (2001) Model analysis of corticothalamic dynamics, electroencephalographic spectra, and evoked potentials. Phys Rev E 63:041909

    Article  CAS  Google Scholar 

  73. Robinson PA, Rennie CJ, Rowe DL (2002) Dynamics of large-scale brain activity in normal arousal states and epileptic seizures. Phys Rev E 65:041924

    Article  CAS  Google Scholar 

  74. Robinson PA, Rennie CJ, Rowe DL, O’Connor SC, Wright JJ, Gordon E (2003) Neurophysical modeling of brain dynamics. Neuropsychopharmacology 28:574–579

    Article  Google Scholar 

  75. Robinson PA, Rennie CJ, Rowe DL, O’Connor SC (2004) Estimation of multiscale neurophysiologic parameters by electroencephalographic means. Hum Brain Map 23:53–72

    Article  CAS  Google Scholar 

  76. Robinson PA, Rennie CJ, Rowe DL, O’Connor SC, Gordon E (2005) Multiscale brain modelling. Philos Trans R Soc Lond Ser B 360:1043–1050

    Article  CAS  Google Scholar 

  77. Robinson PA (2005) Propagator theory of brain dynamics. Phys Rev E 72:011904

    Article  CAS  Google Scholar 

  78. Robinson PA, Henderson JA, Matar E, Riley P, Gray RT (2009) Dynamical reconnection and stability constraints on cortical network architecture. Phys Rev Lett 103:1–4

    Google Scholar 

  79. Robinson PA, Henderson JA, Matar E, Riley P, Gray RT (2010) Phase transitions in physiologically-based multiscale mean-field brain models. In Steyn-Ross DA, Steyn-Ross M (eds) Modeling phase transitions in the brain. Springer Series in Computational Neuroscience, France

  80. Robinson PA (2013) Neural field theory with variance dynamics. J Math Biol 66:1475–1497

    Article  CAS  PubMed  Google Scholar 

  81. Robinson PA (2014) Determination of effective brain connectivity from functional connectivity using propagator-based interferometry and neural field theory with application to the corticothalamic system. Phys Rev E 90:042712

    Article  CAS  Google Scholar 

  82. Robinson PA, Postnova S, Abeysuriya RG, Kim JW, Roberts JA, McKenzie-Sell L, Karanjai A, Kerr CC, Fung F, Anderson R, Breakspear MJ, Drysdale PM, Fulcher BD, Phillips AJK, Rennie CJ, Yin G (2015) A multiscale ‘working brain’ Model’. In: Bhattacharya B, Chowdhury F (eds) Validating computational models in neurological and psychiatric disorders. Springer, New York

    Google Scholar 

  83. Roth M, Shaw J, Green J (1956) The form, voltage distribution and physiological significance of K-complex. Electroencephalogr Clin Neurophysiol 8:358–402

    Article  Google Scholar 

  84. Rowe DL, Robinson PA, Rennie CJ (2004) Estimation of neurophysiological parameters from the waking EEG using a biophysical model of brain dynamics. J Theor Biol 231:413–433

    Article  PubMed  Google Scholar 

  85. Sallinen M, Kaartinen J, Lyytinen H (1997) Precursors of the evoked K-complex in event-related brain potentials in stage 2 sleep. Electroencephalogr Clin Neurophysiol 102:363–373

    Article  CAS  PubMed  Google Scholar 

  86. Sarkar S, Henderson J, Robinson P (2013) Spectral characterization of hierarchical network modularity and limits of modularity detection. PLoS ONE 8:1–11

    Article  Google Scholar 

  87. Sherman SM, Guillery RW (2001) Exploring the thalamus. Academic Press, San Diego

    Google Scholar 

  88. Spehlmann R (1981) EEG primer. Elsevier/North-Holland Biomedical Press, New York

    Google Scholar 

  89. Steriade M, Nunez A, Amzica F (1993) Intracellular analysis of relations between the slow (\(<\)1 Hz) neocortical oscillation and other sleep rhythms of the electroencephalogram. J Neurosci 13:3266–3283

    CAS  PubMed  Google Scholar 

  90. Steriade M, McCormick DA, Sejnowski TJ (1993) Thalamocortical oscillations in the sleeping and aroused brain. Science 262:679–685

    Article  CAS  PubMed  Google Scholar 

  91. Steriade M (2000) Corticothalamic resonance, states of vigilance and mentation. J Neurosci 101:243–276

    Article  CAS  Google Scholar 

  92. Steriade M (2000) Brain electrical activity and sensory processing during waking and sleep states. In: Kryger MH, Roth T, Dement DC (eds) Principles and practices of sleep medicine. Saunders Company, Philadelphia

    Google Scholar 

  93. Steriade M, McCarley RW (2005) Brain control of wakefulness and sleep. Springer, New York

    Google Scholar 

  94. Ujszaszi J, Halasz P (1988) Long latency evoked potential components in human slow wave sleep. Electroencephalogr Clin Neurophysiol 69:516–522

    Article  CAS  PubMed  Google Scholar 

  95. Weitzman ED, Kremen H (1965) Auditory evoked responses during different stages of sleep in man. Electroencephalogr Clin Neurophysiol 18:65–70

    Article  CAS  PubMed  Google Scholar 

  96. Williams D (1953) A study of thalamic and cortical rhythms in petit mal. Brain 76:50–69

    Article  CAS  PubMed  Google Scholar 

  97. Wilson HR, Cowan JD (1973) A mathematical theory of the functional dynamics of cortical and thalamic nervous tissue. Kybernetik 13:55–80

    Article  CAS  PubMed  Google Scholar 

  98. Wilson MT, Steyn-Ross DA, Steyn-Ross ML, Sleigh JW, Gillies IP, Hailstone D (2010) What can a mean-field model tell us about the dynamics of the cortex? In: Steyn-Ross DA, Steyn-Ross M (eds) Modeling phase transitions in the brain. Springer Series in Computational Neuroscience, France

  99. Wilson MT, Steyn-Ross DA, Sleigh JW, Steyn-Ross ML, Wilcocks LC, Gillies IP (2006) The K-complex and slow oscillation in terms of a mean-field cortical model. J Comput Neurosci 213:243–257

    Article  Google Scholar 

  100. Wilson MT, Steyn-Ross ML, Steyn-Ross DA, Sleigh JW (2005) Predictions and simulations of cortical dynamics during natural sleep using a continuum approach. Phys Rev E 72:051910

    Article  CAS  Google Scholar 

  101. Wilson MT, Steyn-Ross ML, Steyn-Ross DA (2005) An explanation of EEG phenomena of the sleeping cortex in terms of a mean-field model. In: 9th Tamagawa dynamic brain forum: continuing a search for paradigms to explore the brain as a complex system. University of Auckland, New Zealand

  102. Wong KKH, Marshall NS, Grunstein RR, Dodd MJ, Rogers NL (2008) Comparing neurocognitive effects of 40 h sustained wakefulness in patients with untreated OSA and healthy controls. J Sleep Res 17:322–330

    Article  PubMed  Google Scholar 

  103. Wright JJ, Liley DTJ (1994) A millimetric scale simulation of electrocortical wave dynamics based on anatomical estimates of cortical synaptic density. Comput Neural Syst 5:191–202

    Article  Google Scholar 

  104. Wright JJ, Sergejew AA, Stampfer HG (1990) Inverse filter computation of the neural impulse giving rise to the auditory evoked potential. Brain Topogr 2:293–302

    Article  CAS  PubMed  Google Scholar 

  105. Zani A, Proverbio AM, Posner MI (2003) The cognitive electrophysiology of mind and brain. Academic Press, Boston

    Book  Google Scholar 

  106. Zhao X, Kim JW, Robinson PA (2015) Slow-wave oscillations in a corticothalamic model of sleep and wake. J Theor Bioplogy 370:93–102

    Article  CAS  Google Scholar 

  107. Zhao X, Robinson PA (2015) Generalized seizures in a neural field model with bursting dynamics. J Comput Neurosci 39:197–216

    Article  CAS  PubMed  Google Scholar 

  108. Zisapel N (2007) Sleep and sleep disturbances: biological basis and clinical implications. Cell Mol Life Sci 64:1174–1186

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank R. G. Abeysuriya, J. Palmer, and Dongping Yang for assistance with Matlab. This work was supported by the Australian Research Council through Center of Excellence grant CE140100007, Laureate Fellowship grant LF1401000225, and Discovery Early Career Research Award DE140101375, and by the National Health and Medical Research Council grants 571421 and 1060992.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. S. Zobaer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zobaer, M.S., Anderson, R.M., Kerr, C.C. et al. K-complexes, spindles, and ERPs as impulse responses: unification via neural field theory. Biol Cybern 111, 149–164 (2017). https://doi.org/10.1007/s00422-017-0713-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00422-017-0713-2

Keywords

Navigation