Skip to main content

Advertisement

Log in

Dynamical study of \(\mathbf{Na }_{{\varvec{v}}}\) channel excitability under mechanical stress

  • Original Article
  • Published:
Biological Cybernetics Aims and scope Submit manuscript

Abstract

Alteration of \(\hbox {Na}_v\) channel functions (channelopathies) has been encountered in various hereditary muscle diseases. \(\hbox {Na}_v\) channel mutations lead to aberrant excitability in skeletal muscle myotonia and paralysis. In general, these mutations disable inactivation of the \(\hbox {Na}_v\) channel, producing either repetitive action potential firing (myotonia) or electrical dormancy (flaccid paralysis) in skeletal muscles. These “sick-excitable” cell conditions were shown to correlate with a mechanical stretch-driven left shift of the conductance factors of the two gating mechanisms of a fraction of \(\hbox {Na}_v\) channels, which make them firing at inappropriate hyperpolarised (left-shifted) voltages. Here we elaborate on a variant of the Hodgkin–Huxley model that includes a stretch elasticity energy component in the activation and inactivation gate kinetic rates. We show that this model reproduces fairly well sick-excitable cell behaviour and can be used to predict the parameter domains where aberrant excitability or paralysis may occur. By allowing us to separate the incidences of activation and inactivation gate impairments in \(\hbox {Na}_v\) channel excitability, this model could be a strong asset for diagnosing the origin of excitable cell disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Adrian R, Chandler W, Hodgkin A (1970) Slow changes in potassium permeability in skeletal muscle. J Physiol 208:645–668

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Assmann MA, Lenz P (2014) Membrane tension influences the spike propagation between voltage-gated ion channel clusters of excitable membranes. Phys Biol 11(4):046,006

    Article  Google Scholar 

  • Bainbridge FA (1915) The influence of venous filling upon the rate of the heart. J Physiol 50(2):65–84

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Banderali U, Juranka PF, Clark RB, Giles WR, Morris CE (2010) Impaired stretch modulation in potentially lethal cardiac sodium channel mutants. Channels 4(1):12–21

    Article  CAS  PubMed  Google Scholar 

  • Bett GCL, Sachs F (1997) Cardiac mechanosensitivity and stretch-activated ion channels. Trends Cardiovasc Med 7(1):4–8

    Article  CAS  PubMed  Google Scholar 

  • Beyder A, Rae JL, Bernard C, Strege PR, Sachs F, Farrugia G (2010) Mechanosensitivity of Nav1.5, a voltage-sensitive sodium channel. J Physiol 588(Pt 24):4969–4985

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brackenbury W (2012) Voltage-gated sodium channels and metastatic disease. Channels 6(5):352–361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brackenbury WJ, Djamgoz MBA, Isom LL (2008) An emerging role for voltage-gated Na channels in cellular migration: regulation of central nervous system development and potentiation of invasive cancers. Neuroscientist 14(6):571–583 NIHMS150003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Butchal F, Sten-Knudsen O (1959) Impulse propagation in striate muscle fibers and the role of the internal current in activation. Ann N Y Acad Sci 81:422–445

    Article  Google Scholar 

  • Calabrese B, Tabarean IV, Juranka P, Morris CE (2002) Mechanosensitivity of N-type calcium channel currents. Biophys J 83(November):2560–2574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cannon RC, O’Donnell C, Nolan M (2010) Stochastic ion channel gating in dendritic neurons: morphology dependence and probabilistic synaptic activation of dendritic spikes. PLoS Comput Biol 6(8):e1000886

    Article  PubMed  PubMed Central  Google Scholar 

  • Cannon SC, Corey DP (1993) Loss of Na+ channel inactivation by anemone toxin (ATX II) mimics the myotonic state in hyperkalaemic periodic paralysis. J Physiol 466:501–520

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cannon SC, Brown RH, Corey DP (1991) A sodium channel in hyperkalemic periodic paralysis:potassium-induced failure of inactivation. Neuron 6(4):619–626

  • Cannon SC, Brown RH, Corey DP (1993) Theoretical reconstruction of myotonia and paralysis caused by incomplete inactivation of sodium channels. Biophys J 65(1):270–288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Casado M, Ascher P (1998) Opposite modulation of NMDA receptors by lysophospholipids and arachidonic acid: common features with mechanosensitivity. J Physiol 513(2):317–330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Catterall WA (2012) Voltage-gated sodium channels at 60: structure, function and pathophysiology. J Physiol 590(11):2577–2589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davies NP, Hanna MG (2001) The skeletal muscle channelopathies: basic science, clinical genetics and treatment. Curr Opin Neurol 14(5):539–551

    Article  CAS  PubMed  Google Scholar 

  • Despa S, Vigmond E (2016) From single myocyte to whole heart. Circ Res 118(2):184–186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dhooge A, Govaerts W, Kuznetsov YA (2003) MATCONT: a MATLAB package for numerical bifurcation analysis of ODEs. ACM Trans Math Softw 29:141–164

    Article  Google Scholar 

  • Fenn W, Cobb D (1936) Electrolyte change in muscle during activity. Am J Physiol 115:345–356

  • Govaertz W (2000a) Numerical bifurcation analysis for OEDs. J Comput Appl Math 125:57–68

    Article  Google Scholar 

  • Govaertz W (2000b) Numerical methods for bifurcation of dynamical systems. SIAM, Philadelphia

  • Gribkoff VK, Kaczmarek LK (2009) Structure, function and modulation of neuronal voltage-gated ion channels. Wiley, Hoboken

    Google Scholar 

  • Gu CX, Juranka PF, Morris CE (2001) Stretch-activation and stretch-inactivation of shaker-IR, a voltage-gated K+ channel. Biophys J 80(6):2678–2693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guckenheimer J, Labouriau IS (1993) Bifurcations in Hodgkin and Huxley equations: a new twist. Bull Math Biol 55(5):937–952

    Article  Google Scholar 

  • Guharay BYF, Sachs F (1984) Stretch-activated single ion channel currents in tissue-cultured embryonic chick skeletal muscle. J Physiol 352:685–701

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hamill OP (2006) Twenty odd years of stretch-sensitive channels. Pflugers Arch Eur J Physiol 453(3):333–351

    Article  CAS  Google Scholar 

  • Hamill OP, Marty A, Neher E, Sakmann B, Sigworth FJ (1981) Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch Eur J Physiol 391:85–100

    Article  CAS  Google Scholar 

  • Helfrich W (1973) Elastic properties of lipid bilayers: theory and possible experiments. Z Naturforsch 28c:693–703

    Google Scholar 

  • Hille B (1992) Ion channels of excitable membranes, 2nd edn. Sinauer Associates, sunderland

    Google Scholar 

  • Hodgkin AL (1951) The ionic basis of electrical activity in nerve and muscle. Biol Rev 26(4):339–409

    Article  CAS  Google Scholar 

  • Hodgkin AL, Horowicz P (1959) Movements of Na and K in single muscle fibres. J Physiol 148(2):405–432

    Article  Google Scholar 

  • Hodgkin AL, Huxley AF (1945) Resting and action potentials in single nerve fibres. J Physiol 104(2):176–195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hodgkin AL, Huxley AF (1952a) A quantitative description of membrane current and its application to conduction and excitation of nerve. J Physiol 117:500–544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hodgkin AL, Huxley AF (1952b) Currents carried by sodium and potassium ions through the membrane of the giant axon of Loligo. J Physiol 116:449–472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu H, Sachs F (1997) Stretch-activated ion channels in the heart. J Mol Cell Cardiol 29(6):1511–1523

    Article  CAS  PubMed  Google Scholar 

  • Huxley AF (1959) Local activation of muscle. Ann N Y Acad Sci 81:446–452

    Article  CAS  PubMed  Google Scholar 

  • Izhikevich EM (2000) Neural excitability, spiking and bursting. Int J Bifurc Chaos 10(6):1171–1266

    Article  Google Scholar 

  • Izhikevich EM (2007) Dynamical systems in neuroscience. MIT Press, Cambridge

    Google Scholar 

  • Jarecki BW, Piekarz AD, Jackson JO, Cummins TR (2010) Human voltage-gated sodium channel mutations that cause inherited neuronal and muscle channelopathies increase resurgent sodium currents. J Clin Investig 120(1):369–378

    Article  CAS  PubMed  Google Scholar 

  • Kaczmarek LK (2006) Non-conducting functions of voltage-gated ion channels. Nat Rev Neurosci 7(10):761–771

    Article  CAS  PubMed  Google Scholar 

  • Kohl P, Hunter P, Noble D (1999) Stretch-induced changes in heart rate and rhythm: clinical observations, experiments and mathematical models. Prog Biophys Mol Biol 71(1):91–138

    Article  CAS  PubMed  Google Scholar 

  • Laitko U (2004) Membrane tension accelerates rate-limiting voltage-dependent activation and slow inactivation steps in a shaker channel. J Gen Physiol 123(2):135–154

    Article  PubMed  PubMed Central  Google Scholar 

  • Laitko U (2006) Membrane stretch slows the concerted step prior to opening in a Kv channel. J Gen Physiol 127(6):687–701

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin W, Laitko U, Juranka PF, Morris CE (2007) Dual stretch responses of mHCN2 pacemaker channels: accelerated activation, accelerated deactivation. Biophys J 92(5):1559–1572

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Schrank B, Waterston RH (1996) Interaction between a putative mechanosensory membrane channel and a collagen. Science 273(5273):361–364

    Article  CAS  PubMed  Google Scholar 

  • Maingret F, Patel AJ, Lesage F, Lazdunski M, Honoré E (2000) Lysophospholipids open the two-pore domain mechano-gated K+ channels TREK-1 and TRAAK. J Biol Chem 275(14):10,128–10,133

  • Markin VS, Sachs F (2004) Thermodynamics of mechanosensitivity. Phys Biol 1:110–124

    Article  CAS  PubMed  Google Scholar 

  • Morris CE (1990) Mechanosensitive channels. J Membr Biol 107:93–107

    Article  Google Scholar 

  • Morris CE, Juranka PF (2007) Nav channel mechanosensitivity: activation and inactivation accelerate reversibly with stretch. Biophys J 93(3):822–833

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morris CE, Boucher PA, Joos B (2012) Left-shifted Nav channels in injured bilayer: primary targets for neuroprotective Nav antagonists? Front Pharm 3(19):1–13

    Google Scholar 

  • Morris CE, Prikryl EA, Joos B (2015) Mechanosensitive gating of Kv channels. PLoS ONE 10(2):1–24

    Google Scholar 

  • Namadurai S, Yereddi NR, Cusdin FS, Huang CLH, Chirgadze DY, Jackson AP (2015) A new look at sodium channel beta subunits. Open Biol 5(1):140,192

    Article  Google Scholar 

  • Pawson L, Bolanowski SJ (2002) Voltage-gated sodium channels are present on both the neural and capsular structures of Pacinian corpuscles. Somatosens Mot Res 19(3):231–237

    Article  PubMed  Google Scholar 

  • Peyronnet R, Nerbonne JM, Kohl P (2016) Cardiac mechano-gated ion channels and arrhythmias. Circ Res 118(2):311–329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ptacek LJ, Johnson KJ, Griggs R (1993) Genetic and physiology of the myotonic muscle disorders. N Engl J Med 328(7):482–489

    Article  CAS  PubMed  Google Scholar 

  • Sachs F (1988) Mechanical transduction in biological membranes. CRC Crit Rev Biomed Eng 16(2):141–169

    CAS  Google Scholar 

  • Sachs F (1989) Ion channels as mechanical transducers. In: Stein WD, Bronner F (eds) Cell shape: determinants, regulation and regulatory role. Academic Press, San Diego, pp 63–92

    Chapter  Google Scholar 

  • Sackin H (1995) Mechanosensitive channels. Annu Rev Physiol 57:333–353

    Article  CAS  PubMed  Google Scholar 

  • Sakmann B, Neher E (2009) Single channel recording, 2nd edn. Springer, New York

    Google Scholar 

  • Shcherbatko A, Ono F, Mandel G, Brehm P (1999) Voltage-dependent sodium channel function is regulated through membrane mechanics. Biophys J 77(4):1945–1959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Simkin D, Bendahhou S (2011) Skeletal muscle Na+ channel disorders. Front Pharm 2(63):1–10

    Google Scholar 

  • Spillane J, Kullmann DM, Hanna MG (2016) Genetic neurological channelopathies: molecular genetics and clinical phenotypes. J Neurol Neurosurg Psychiatry 87:37–48

    CAS  PubMed  Google Scholar 

  • Tabarean IV, Juranka P, Morris CE (1999) Membrane stretch affects gating modes of a skeletal muscle sodium channel. Biophys J 77(2):758–774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ulbricht W (2005) Sodium channel inactivation: molecular determinants and modulation. Physiol Rev 85:1271–1301

    Article  CAS  PubMed  Google Scholar 

  • Wang JA, Lin W, Morris T, Banderali U, Juranka PF, Morris CE (2009) Membrane trauma and Na+ leak from Nav1.6 channels. Am J Physiol Cell Physiol 297(4):C823–C834

    Article  CAS  PubMed  Google Scholar 

  • Wiggins S (1988) Global bifurcations and chaos. Analytical methods. Springer, New York

    Book  Google Scholar 

  • Yu N, Morris CE, Joós B, Longtin A (2012) Spontaneous excitation patterns computed for axons with injury-like impairments of sodium channels and Na/K pumps. PLoS Comput Biol 8(9):e1002,664

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge financial support from China Scholarship Council. This project was supported by the National Science Foundation of China (81590953, 81574053, 8157150277), the National Program on Key Basic Research Project (973 Program) (2012CB518502), the Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function (14DZ2260500) and the National Science Foundation of Shanghai (15441903800). This work was also supported by the Centre National de la Recherche Scientifique, l’Ecole Normale Superieure of Lyon and the University of Bordeaux.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Argoul.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, Q.X., Arneodo, A., Ding, G.H. et al. Dynamical study of \(\mathbf{Na }_{{\varvec{v}}}\) channel excitability under mechanical stress. Biol Cybern 111, 129–148 (2017). https://doi.org/10.1007/s00422-017-0712-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00422-017-0712-3

Keywords

Navigation