Skip to main content
Log in

A sensory-driven controller for quadruped locomotion

  • Original Article
  • Published:
Biological Cybernetics Aims and scope Submit manuscript

Abstract

Locomotion of quadruped robots has not yet achieved the harmony, flexibility, efficiency and robustness of its biological counterparts. Biological research showed that spinal reflexes are crucial for a successful locomotion in the most varied terrains. In this context, the development of bio-inspired controllers seems to be a good way to move toward an efficient and robust robotic locomotion, by mimicking their biological counterparts. This contribution presents a sensory-driven controller designed for the simulated Oncilla quadruped robot. In the proposed reflex controller, movement is generated through the robot’s interactions with the environment, and therefore, the controller is solely dependent on sensory information. The results show that the reflex controller is capable of producing stable quadruped locomotion with a regular stepping pattern. Furthermore, it is capable of dealing with slopes without changing the parameters and with small obstacles, overcoming them successfully. Finally, system robustness was verified by adding noise to sensors and actuators and also delays.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Akay T, McVea D, Tachibana A, Pearson K (2006) Coordination of fore and hind leg stepping in cats on a transversely-split treadmill. Exp Brain Res 175(2):211–222

    Article  CAS  PubMed  Google Scholar 

  • Akay T, Tourtellotte WG, Arber S, Jessell TM (2014) Degradation of mouse locomotor pattern in the absence of proprioceptive sensory feedback. Proc Natl Acad Sci 111(47):16,877–16,882

    Article  CAS  Google Scholar 

  • Brown TG (1911) The intrinsic factors in the act of progression in the mammal. In: Proceedings of the Royal Society of London Series B, containing papers of a biological character, pp 308–319

  • Burke RE (2007) Sir Charles Sherrington’s the integrative action of the nervous system: a centenary appreciation. Brain 130(4):887–894

    Article  PubMed  Google Scholar 

  • Cartmill M, Lemelin P, Schmitt D (2002) Support polygons and symmetricalgaits in mammals. Zool J Linn Soc 136(3):401–420

    Article  Google Scholar 

  • Cruse H, Kindermann T, Schumm M, Dean J, Schmitz J (1998) Walkneta biologically inspired network to control six-legged walking. Neural Netw 11(7):1435–1447

    Article  PubMed  Google Scholar 

  • Daun-Gruhn S, Büschges A (2011) From neuron to behavior: dynamic equation-based prediction of biological processes in motor control. Biol Cybern 105(1):71–88

    Article  PubMed  Google Scholar 

  • Dong Y, Liu W, Zuo S (2014) Observer design for nonlinear systems with interval time-varying delay. WSEAS Trans Syst Control 9:614–622

    Google Scholar 

  • Duysens J, Pearson K (1976) The role of cutaneous afferents from the distal hindlimb in the regulation of the step cycle of thalamic cats. Exp Brain Res 24(3):245–255

    Article  CAS  PubMed  Google Scholar 

  • Dzeladini F, Van Den Kieboom J, Ijspeert A (2014) The contribution of a central pattern generator in a reflex-based neuromuscular model. Front Hum Neurosci 8:371. doi:10.3389/fnhum.2014.00371

    Article  PubMed  PubMed Central  Google Scholar 

  • Ekeberg Ö, Pearson K (2005) Computer simulation of stepping in the hind legs of the cat: an examination of mechanisms regulating the stance-to-swing transition. J Neurophysiol 94(6):4256–4268

    Article  PubMed  Google Scholar 

  • Ferreira C, Santos CP, Rocha J (2014) Quadruped sensory-driven locomotion. Math Methods Comput Tech Intell Syst 33:92–98

    Google Scholar 

  • Forssberg H (1979) Stumbling corrective reaction: a phase-dependent compensatory reaction during locomotion. J Neurophysiol 42(4):936–953

    CAS  PubMed  Google Scholar 

  • Forssberg H, Grillner S, Rossignol S (1977) Phasic gain control of reflexes from the dorsum of the paw during spinal locomotion. Brain Res 132(1):121–139

    Article  CAS  PubMed  Google Scholar 

  • Fukuoka Y, Kimura H, Cohen AH (2003) Adaptive dynamic walking of a quadruped robot on irregular terrain based on biological concepts. Int J Robot Res 22(3–4):187–202

    Article  Google Scholar 

  • Fukuoka Y, Habu Y, Fukui T (2015) A simple rule for quadrupedal gait generation determined by leg loading feedback: a modeling study. Scientific reports 5

  • Geyer H, Herr H (2010) A muscle-reflex model that encodes principles of legged mechanics produces human walking dynamics and muscle activities. IEEE Trans Neural Syst Rehabil Eng 18(3):263–273

    Article  PubMed  Google Scholar 

  • Gorassini MA, Prochazka A, Hiebert GW, Gauthier MJ (1994) Corrective responses to loss of ground support during walking. I. Intact cats. J Neurophysiol 71:603–603

    CAS  PubMed  Google Scholar 

  • Grillner S, Rossignol S (1978) On the initiation of the swing phase of locomotion in chronic spinal cats. Brain Res 146(2):269–277

    Article  CAS  PubMed  Google Scholar 

  • Hiebert GW, Gorassini MA, Jiang W, Prochazka A, Pearson KG (1994) Corrective responses to loss of ground support during walking. II. Comparison of intact and chronic spinal cats. J Neurophysiol 71:611–611

    CAS  PubMed  Google Scholar 

  • Hiebert GW, Whelan PJ, Prochazka A, Pearson KG (1995) Suppression of the corrective response to loss of ground support by stimulation of extensor group I afferents. J Neurophysiol 73(1):416–420

    CAS  PubMed  Google Scholar 

  • Hildebrand M (1965) Symmetrical gaits of horses. Science 150(3697):701–708

    Article  CAS  PubMed  Google Scholar 

  • Hunt A, Schmidt M, Fischer M, Quinn R (2015) A biologically based neural system coordinates the joints and legs of a tetrapod. Bioinspir Biomim 10(5):055,004

    Article  Google Scholar 

  • Ijspeert AJ (2008) Central pattern generators for locomotion control in animals and robots: a review. Neural Netw 21(4):642–653

    Article  PubMed  Google Scholar 

  • Ijspeert AJ (2014) Biorobotics: using robots to emulate and investigate agile locomotion. Science 346(6206):196–203

    Article  CAS  PubMed  Google Scholar 

  • Iosa M, Morone G, Fusco A, Pratesi L, Bragoni M, Coiro P, Multari M, Venturiero V, De Angelis D, Paolucci S (2012) Effects of walking endurance reduction on gait stability in patients with stroke. Stroke Res Treat 2012:Article ID 810415, 6 pages. doi:10.1155/2012/810415

  • Iosa M, Marro T, Paolucci S, Morelli D (2012) Stability and harmony of gait in children with cerebral palsy. Res Dev Disabil 33(1):129–135

    Article  PubMed  Google Scholar 

  • Kaushik R, Marcinkiewicz M, Xiao J, Parsons S, Raphan T (2007) Implementation of bio-inspired vestibulo-ocular reflex in a quadrupedal robot. In: Robotics and Automation, 2007 IEEE International Conference on, IEEE, pp 4861–4866

  • Kimura H, Fukuoka Y, Nakamura H (2000) Biologically inspired adaptive dynamic walking of the quadruped on irregular terrain. In: Robotics Research—International Symposium, vol 9, pp 329–336

  • Kimura H, Fukuoka Y, Cohen AH (2007) Adaptive dynamic walking of a quadruped robot on natural ground based on biological concepts. Int J Robot Res 26(5):475–490

    Article  Google Scholar 

  • Klein TJ, Lewis MA (2012) A physical model of sensorimotor interactions during locomotion. J Neural Eng 9(4):046,011

    Article  Google Scholar 

  • Kuo AD (2002) The relative roles of feedforward and feedback in the control of rhythmic movements. Motor Control Champaign 6(2):129–145

    Article  Google Scholar 

  • Maufroy C, Kimura H, Takase K (2008) Towards a general neural controller for quadrupedal locomotion. Neural Netw 21(4):667–681

    Article  PubMed  Google Scholar 

  • McCrea DA (2001) Spinal circuitry of sensorimotor control of locomotion. J Physiol 533(1):41–50

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McVea DA, Donelan JM, Tachibana A, Pearson KG (2005) A role for hip position in initiating the swing-to-stance transition in walking cats. J Neurophysiol 94(5):3497–3508

    Article  CAS  PubMed  Google Scholar 

  • Michel O (2004) Webots: professional mobile robot simulation. J Adv Robot Syst 1(1):39–42

    Google Scholar 

  • Owaki D, Morikawa L, Ishiguro A (2012) Listen to body’s message: quadruped robot that fully exploits physical interaction between legs. In: Intelligent Robots and Systems (IROS), 2012 IEEE/RSJ International Conference on, IEEE, pp 1950–1955

  • Pearson K (2008) Role of sensory feedback in the control of stance duration in walking cats. Brain Res Rev 57(1):222–227

    Article  CAS  PubMed  Google Scholar 

  • Pearson K, Ekeberg Ö, Büschges A (2006) Assessing sensory function in locomotor systems using neuro-mechanical simulations. Trends Neurosci 29(11):625–631

    Article  CAS  PubMed  Google Scholar 

  • Pearson KG (2004) Generating the walking gait: role of sensory feedback. Prog Brain Res 143:123–129

    Article  PubMed  Google Scholar 

  • Pfeifer R, Lungarella M, Iida F (2007) Self-organization, embodiment, and biologically inspired robotics. Science 318(5853):1088–1093

    Article  CAS  PubMed  Google Scholar 

  • Porta JM, Celaya E (2001) Efficient gait generation using reinforcement learning. In: Proceedings of the Fourth International Conference on Climbing and Walking Robots, pp 411–418

  • Prochazka A, Sontag KH, Wand P (1978) Motor reactions to perturbations of gait: proprioceptive and somesthetic involvement. Neurosci Lett 7(1):35–39

    Article  CAS  PubMed  Google Scholar 

  • Raibert MH (1986) Legged robots that balance. MIT press, Cambridge

    Google Scholar 

  • Rossignol S, Dubuc R, Gossard JP (2006a) Dynamic sensorimotor interactions in locomotion. Physiol Rev 86(1):89–154

    Article  PubMed  Google Scholar 

  • Rossignol S, Dubuc R, Gossard JP (2006b) Dynamic sensorimotor interactions in locomotion. Physiol Rev 86(1):89–154

    Article  PubMed  Google Scholar 

  • Schilling M, Hoinville T, Schmitz J, Cruse H (2013) Walknet, a bio-inspired controller for hexapod walking. Biol Cybern 107(4):397–419

    Article  PubMed  PubMed Central  Google Scholar 

  • Sousa J, Matos V, Peixoto dos Santos C (2010) A bio-inspired postural control for a quadruped robot: an attractor-based dynamics. In: Intelligent Robots and Systems (IROS), 2010 IEEE/RSJ International Conference on, IEEE, pp 5329–5334

  • Sproewitz A, Kuechler L, Tuleu A, Ajallooeian M, Möckel R, Ijspeert A, et al (2011) Oncilla robot: a light-weight bio-inspired quadruped robot for fast locomotion in rough terrain. In: 5th International Symposium on Adaptive Motion of Animals and Machines, EPFL-CONF-182313

  • Spröwitz A, Tuleu A, Vespignani M, Ajallooeian M, Badri E, Ijspeert AJ (2013) Towards dynamic trot gait locomotion: design, control, and experiments with cheetah-cub, a compliant quadruped robot. Int J Robot Res 32(8):932–950

    Article  Google Scholar 

  • Talpalar AE, Bouvier J, Borgius L, Fortin G, Pierani A, Kiehn O (2013) Dual-mode operation of neuronal networks involved in left–right alternation. Nature 500(7460):85–88

    Article  CAS  PubMed  Google Scholar 

  • Teixeira C, Costa L, Santos C (2014) Biped locomotion-improvement and adaptation. In: Autonomous Robot Systems and Competitions (ICARSC), 2014 IEEE International Conference on, IEEE, pp 110–115

  • Wadden T, Ekeberg Ö (1998) A neuro-mechanical model of legged locomotion: single leg control. Biol Cybern 79(2):161–173

    Article  CAS  PubMed  Google Scholar 

  • Yakovenko S, Gritsenko V, Prochazka A (2004) Contribution of stretch reflexes to locomotor control: a modeling study. Biol Cybern 90(2):146–155

    Article  CAS  PubMed  Google Scholar 

  • Yakovenko S (2011) A hierarchical perspective on rhythm generation for locomotor control. In: Gossard JP, Dubuc R, Kolta A (eds) Progress in Brain Research, chap 10, vol 188. Elsevier, pp 151–166

Download references

Acknowledgements

This work has been supported by FCT—Fundação para a Ciência e Tecnologia in the scope of the project: PEst-UID/CEC/00319/2013.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to César Ferreira.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ferreira, C., Santos, C.P. A sensory-driven controller for quadruped locomotion. Biol Cybern 111, 49–67 (2017). https://doi.org/10.1007/s00422-016-0708-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00422-016-0708-4

Keywords

Navigation