Biological Cybernetics

, Volume 110, Issue 4–5, pp 291–302 | Cite as

Coupled ears in lizards and crocodilians

  • Catherine E. Carr
  • Jakob Christensen-Dalsgaard
  • Hilary Bierman
Prospects

Abstract

Lizard ears are coupled across the pharynx, and are very directional. In consequence all auditory responses should be directional, without a requirement for computation of sound source location. Crocodilian ears are connected through sinuses, and thus less tightly coupled. Coupling may improve the processing of low-frequency directional signals, while higher frequency signals appear to be progressively uncoupled. In both lizards and crocodilians, the increased directionality of the coupled ears leads to an effectively larger head and larger physiological range of ITDs. This increased physiological range is reviewed in the light of current theories of sound localization.

Keywords

Auditory Neural coding Lizard Alligator Barn owl 

References

  1. Batra R, Yin TCT (2004) Cross correlation by neurons of the medial superior olive: a reexamination. JARO 5:238–252. doi:10.1007/s10162-004-4027-4 CrossRefPubMedPubMedCentralGoogle Scholar
  2. Beach FA (1944) Responses of captive alligators to auditory stimulation. Am Nat 78:481–505CrossRefGoogle Scholar
  3. Bierman HS, Carr CE (2015) Sound localization in the alligator. Hear Res. doi:10.1016/j.heares.2015.05.009 PubMedPubMedCentralGoogle Scholar
  4. Bierman HS, Thornton JL, Jones HG et al (2014) Biophysics of directional hearing in the American alligator (Alligator mississippiensis). J Exp Biol 217:1094–1107. doi:10.1242/jeb.092866 CrossRefPubMedPubMedCentralGoogle Scholar
  5. Burger RM, Rubel EW (2008) Encoding of interaural timing for binaural hearing. Senses Compr Ref 3:613–630CrossRefGoogle Scholar
  6. Calford M, Piddington R (1988) Avian interaural canal enhances interaural delay. J Comp Physiol A 162:503–510CrossRefGoogle Scholar
  7. Carr CE (1993) Processing of temporal information in the brain. Annu Rev Neurosci 16:223–243. doi:10.1146/annurev.ne.16.030193.001255 CrossRefPubMedGoogle Scholar
  8. Carr CE, Köppl C (2004) Coding interaural time differences at low best frequencies in the barn owl. J Physiol Paris 98:99–112. doi:10.1016/j.jphysparis.2004.03.003
  9. Carr CE, Soares D (2002) Evolutionary convergence and shared computational principles in the auditory system. Brain Behav Evol 59:294–311CrossRefPubMedGoogle Scholar
  10. Carr CE, Soares D (2006) Shared and convergent features of the auditory system of vertebrates. In: Kaas J (ed) Evolutionary neuroscience. Academic Press, Cambridge, MA, USA, pp 479–494Google Scholar
  11. Carr CE, Soares D, Smolders J, Simon JZ (2009) Detection of interaural time differences in the alligator. J Neurosci 29:7978–7990. doi:10.1523/JNEUROSCI.6154-08.2009 CrossRefPubMedPubMedCentralGoogle Scholar
  12. Christensen-Dalsgaard J (2005) Directional hearing in nonmammalian tetrapods. Sound Source Localiz. doi:10.1007/0-387-28863-5 Google Scholar
  13. Christensen-Dalsgaard J, Carr CE (2011) Directionality of gecko auditory nerve fibers with free field stimulation. Assoc Res Otolaryngol Abstr 34:155Google Scholar
  14. Christensen-Dalsgaard J, Manley GA (2005) Directionality of the lizard ear. J Exp Biol 208:1209–1217. doi:10.1242/jeb.01511 CrossRefPubMedGoogle Scholar
  15. Christensen-Dalsgaard J, Manley GA (2008) Acoustical coupling of lizard eardrums. JARO 9:407–416. doi:10.1007/s10162-008-0130-2 PubMedGoogle Scholar
  16. Christensen-Dalsgaard J, Tang Y-Z, Carr CE (2011) Binaural processing by the gecko auditory periphery. J Neurophys 105:1992–2004. doi:10.1152/jn.00004.2011 CrossRefGoogle Scholar
  17. Clark JM, Norell MA, Rowe T (2002) Cranial anatomy of Citipati osmolskae (Theropoda, Oviraptorosauria), and a reinterpretation of the holotype of Oviraptor philoceratops. Am Mus Novi 3364:1–24Google Scholar
  18. Coles R, Lewis DB, Hill KG et al (1980) Directional hearing in the Japanese quail (Coturnix Coturnix japonica) II. Cochlear physiology. J Exp Biol 86:153–170Google Scholar
  19. Dufeau DL, Witmer LM (2015) Ontogeny of the middle-ear air-sinus system in Alligator mississippiensis (Archosauria: Crocodylia). PLoS ONE. 10(9):e0137060. doi:10.1371/journal.pone.0137060 CrossRefPubMedPubMedCentralGoogle Scholar
  20. Düring M, Karduck A, Richter H-G (1974) The fine structure of the inner ear in Caiman crocodilus. Anat Embryol 145:41–65. doi:10.1007/BF00519125 Google Scholar
  21. Fischer BJ, Pena JL (2009) Bilateral matching of frequency tuning in neural cross-correlators of the owl. Biol Cybern 100:521–531. doi:10.1007/s00422-009-0312-y CrossRefPubMedPubMedCentralGoogle Scholar
  22. Fletcher NH (1992) Acoustic systems in biology. Oxford University Press, Oxford, UKGoogle Scholar
  23. Gans E, Willis KL, Carr CE (2012) The interaural canal of the barn owl, Tyto alba. Soc Integr Comp Biol Abstr P3:147Google Scholar
  24. Gleich O, Manley GA (2000) The hearing organ of birds and crocodilia. Comparative hearing: birds and reptiles. Springer, New York, pp 70–138CrossRefGoogle Scholar
  25. Green RE, Braun EL, Armstrong J et al (2014) Three crocodilian genomes reveal ancestral patterns of evolution among archosaurs. Science 346:1254449. doi:10.1126/science.1254449 CrossRefPubMedPubMedCentralGoogle Scholar
  26. Grothe B, Carr CE, Casseday J et al (2004) The evolution of central pathways and their neural processing patterns. In: Popper AN, Fay RR, Manley GA (eds) Evolution of the vertebrate auditory system. Springer, New York, pp 289–359CrossRefGoogle Scholar
  27. Grothe B, Pecka M, McAlpine D (2010) Mechanisms of sound localization in mammals. Physiol Rev 90:983–1012. doi:10.1152/physrev.00026.2009 CrossRefPubMedGoogle Scholar
  28. Harper NS, McAlpine D (2004) Optimal neural population coding of an auditory spatial cue. Nature 430:682–686. doi:10.1038/nature02768 CrossRefPubMedGoogle Scholar
  29. Harper NS, Scott BH, Semple MN, McAlpine D (2014) The neural code for auditory space depends on sound frequency and head size in an optimal manner. PLoS One 9(11):e108154. doi:10.1371/journal.pone.0108154 CrossRefPubMedPubMedCentralGoogle Scholar
  30. Higgs DM, Brittan-Powell EF, Soares D et al (2002) Amphibious auditory responses of the American alligator (Alligator mississipiensis). J Comp Physiol Psychol 188:217–223. doi:10.1007/s00359-002-0296-8 CrossRefGoogle Scholar
  31. Hill KG, Stange G, Mo J (1989) Temporal synchronization in the primary auditory response in the pigeon. Hear Res 39:63–73CrossRefPubMedGoogle Scholar
  32. Hyson RL, Overholt EM, Lippe WR (1994) Cochlear microphonic measurements of interaural time differences in the chick. Hear Res 81:109–118CrossRefPubMedGoogle Scholar
  33. Klinke R, Pause M (1980) Discharge properties of primary auditory fibres in Caiman crocodilus: comparisons and contrasts to the mammalian auditory nerve. Exp Brain Res 38:137–150CrossRefPubMedGoogle Scholar
  34. Klump GM (2000) Sound localization in birds. In: Popper AN, Fay RR (eds) Comparative hearing birds and reptiles. Springer, BerlinGoogle Scholar
  35. Konishi M (2003) Coding of auditory space. Annu Rev Neurosci 26:31–55. doi:10.1146/annurev.neuro.26.041002.131123 CrossRefPubMedGoogle Scholar
  36. Köppl C (1997) Phase locking to high frequencies in the auditory nerve and cochlear nucleus magnocellularis of the barn owl, Tyto alba. J Neurosci 17:3312–3321PubMedGoogle Scholar
  37. Köppl C, Carr CE (2008) Maps of interaural time difference in the chicken’s brainstem nucleus laminaris. Biol Cybern 98:541–559. doi:10.1007/s00422-008-0220-6 CrossRefPubMedPubMedCentralGoogle Scholar
  38. Kundrát M, Janáček J (2007) Cranial pneumatization and auditory perceptions of the oviraptorid dinosaur Conchoraptor gracilis (Theropoda, Maniraptora) from the Late Cretaceous of Mongolia. Naturwissenschaften 94:769–778CrossRefPubMedGoogle Scholar
  39. Larsen ON, Dooling RJ, Ryals BM (1992) Roles of intracranial air pressure in bird audition. Diversity in auditory mechanics. World Scientific, Singapore, pp 11–17Google Scholar
  40. Larsen ON, Christensen-Dalsgaard J, Jensen KK (2016) Role of intracranial cavities in avian directional hearing. Biol Cybern. doi:10.1007/s00422-016-0688-4 Google Scholar
  41. Leake PA (1974) Central projections of the statoacoustic nerve in Caiman crocodilus. Brain Behav Evol 10:170–196. doi:10.1159/000124311 CrossRefPubMedGoogle Scholar
  42. Lee M, Cau A, Naish D, Dyke GJ (2014) Sustained miniaturization and anatomical innovation in the dinosaurian ancestors of birds. Science 345:558–562. doi:10.1126/science.1240064 CrossRefGoogle Scholar
  43. Manley GA (1970) Frequency sensitivity of auditory neurons in the caiman cochlear nucleus. Zeitschrift für vergleichende Physiologie 66:251–256CrossRefGoogle Scholar
  44. Manley GA (1981) A review of the auditory physiology of reptiles. Prog Sens Physiol 2:49–134CrossRefGoogle Scholar
  45. Mason MJ (2016) Internally coupled ears in living mammals. Biol Cybern. doi:10.1007/s00422-015-0675-1 PubMedGoogle Scholar
  46. McAlpine D, Grothe B (2003) Sound localization and delay lines-do mammals fit the model? Trends Neurosci 26:347–350. doi:10.1016/S0166-2236(03)00140-1 CrossRefPubMedGoogle Scholar
  47. Michelsen A, Larsen ON (2008) Pressure difference receiving ears. Bioinspir Biomim 3:11001CrossRefGoogle Scholar
  48. Owen R (1843) On the communications between the Tympanum and Palate in the crocodilian reptiles. Abstracts of the Papers Communicated to the Royal Society of London, vol 5. The Royal Society, UK, pp 927–928Google Scholar
  49. Palanca-Castan N, Köppl C (2015a) In vivo recordings from low-frequency nucleus laminaris in the barn owl. Brain Behav evol 85(4):271–286CrossRefPubMedGoogle Scholar
  50. Palanca-Castan N, Köppl C (2015) Change in the coding of interaural time difference along the tonotopic axis of the chicken nucleus laminaris. Front Neural Circuits 9:43. doi:10.3389/fncir.2015.00043 CrossRefPubMedPubMedCentralGoogle Scholar
  51. Rosowski JJ, Saunders JC (1980) Sound transmission through the avian interaural pathways. J Comp Physiol Psychol 136:183–190. doi:10.1007/BF00657532 CrossRefGoogle Scholar
  52. Saunders JC, Duncan RK, Doan DE, Werner YL (2000) The middle ear of reptiles and birds. In: Dooling RJ, Fay RR, Popper AN (eds) Comparative hearing: birds and reptiles. Springer, Berlin, pp 70–138Google Scholar
  53. Shaikh D, Hallam J, Christensen-Dalsgaard J (2016) From “ear” to there a review of biorobotic models of auditory processing in lizards. Biol Cybern. doi:10.1007/s00422-016-0701-y
  54. Starck JM (1994) Comparative anatomy of the external and middle ear of palaeognathous birds. Adv Anat Embryol Cell Biol 131:1–137CrossRefGoogle Scholar
  55. Strain GM, Tucker TA, Graham MC, O’Malley NA (1987) Brain-stem auditory evoked potentials in the alligator. Effects of temperature and hypoxia. Electroencephalogr Clin Neurophysiol 67:68–76CrossRefPubMedGoogle Scholar
  56. Tang Y-Z, Christensen-Dalsgaard J, Carr CE (2012) Organization of the auditory brainstem in a lizard, Gekko gecko. I. Auditory nerve, cochlear nuclei, and superior olivary nuclei. J Comp Neurol 520:1784–1799. doi:10.1002/cne.23013 CrossRefPubMedPubMedCentralGoogle Scholar
  57. Vedurmudi AP, Goulet J, Christensen-Dalsgaard J, Young BA, Williams R, van Hemmen JL (2016a) How internally coupled ears generate temporal and amplitude cues for sound localization. Phys Rev Lett 116(2):028101Google Scholar
  58. Vedurmudi AP, Young BA, van Hemmen JL (2016b) Internally coupled ears: mathematical structures and mechanisms underlying ICE. Biol Cybern. doi:10.1007/s00422-016-0696-4 PubMedGoogle Scholar
  59. Vossen C, Christensen-Dalsgaard J, van Hemmen JL (2010) Analytical model of internally coupled ears. J Acoust Soc Am 128:909–918. doi:10.1121/1.3455853 CrossRefPubMedGoogle Scholar
  60. Werner YL, Montgomery LG, Seifan M, Saunders JC (2008) Effects of age and size in the ears of gekkotan lizards: auditory sensitivity, its determinants, and new insights into tetrapod middle-ear function. Pflugers Arch 456:951–967. doi:10.1007/s00424-008-0462-0 CrossRefPubMedGoogle Scholar
  61. Werner YL, Wever EG (1972) The function of the middle ear in lizards: Gekko gecko and Eublepharis macularius (Gekkonoidea). J Exp Zool 179:1–16. doi:10.1002/jez.1401790102 CrossRefGoogle Scholar
  62. Wever EG (1978) The reptile ear: its structure and function. Princeton University Press, PrincetonGoogle Scholar
  63. Witmer LM, Ridgely R, Dufeau D, Semones M (2008) Using CT to peer into the past: 3D visualization of the brain and ear regions of birds, crocodiles, and nonavian dinosaurs. In: Endo H, Frey R (eds) Anatomical imaging: towards a new morphology. Springer, Tokyo, pp 67–88CrossRefGoogle Scholar
  64. Witmer LM, Ridgely RC (2008) The paranasal air sinuses of predatory and armored dinosaurs (archosauria: theropoda and ankylosauria) and their contribution to cephalic structure. Anat Rec 291:1362–1388. doi:10.1002/ar.20794 CrossRefGoogle Scholar
  65. Witmer LM, Ridgely RC (2009) New insights into the brain, braincase, and ear region of tyrannosaurs (Dinosauria, Theropoda), with implications for sensory organization and behavior. Anat Rec 292:1266–1296. doi:10.1002/ar.20983 CrossRefGoogle Scholar
  66. Yan K, Tang Y-Z, Carr CE (2010) Calcium-binding protein immunoreactivity characterizes the auditory system of Gekko gecko. J Comp Neurol 518:3409–3426. doi:10.1002/cne.22428 CrossRefPubMedPubMedCentralGoogle Scholar
  67. Zhang G, Jarvis ED, Gilbert MTP (2014) Avian genomes. A flock of genomes. Introduction. Science 346:1308–1309. doi:10.1126/science.346.6215.1308 PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Department of BiologyUniversity of Maryland College ParkCollege ParkUSA
  2. 2.Department of BiologyUniversity of Southern DenmarkOdenseDenmark

Personalised recommendations