Skip to main content
Log in

A DOG filter model of the occurrence of Mach bands on spatial contrast discontinuities

  • Letter to the Editor
  • Published:
Biological Cybernetics Aims and scope Submit manuscript

Abstract

The present work proposes a unified model to explain two previously reported properties of the Mach band illusion. The first is the frequently referenced fact that Mach bands are prominently visible at ramps, but practically vanish at intensity steps. The second property, less studied, on the other hand may also be related to the first. It concerns the fact that the width of the illusory Mach bands appears to be a function of the slope of the ramp itself. The model proposed here combines the difference of Gaussians (DOG) model of lateral inhibition in receptive fields with the models of feature detection, based on a holistic approach. The sharpness of discontinuity (SOD) concept for Mach band stimulus has been defined and is related to the slope of the ramp. It is suggested that calculation of SOD leads to an adaptive change in inhibitory surround, a notion that has the support of physiological experiments too.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  • Albrecht DG, Hamilton DB (1982) Striate cortex of monkey and cat: contrast response function. J Neurophysiol 48:217–237

    CAS  PubMed  Google Scholar 

  • Bakshi A, Ghosh K (2012) Some insights into why the perception of Mach bands is strong for luminance ramps and weak or vanishing for luminance steps. Perception 41:1403–1408

    Article  PubMed  Google Scholar 

  • Barlow H, Fitzhugh R, Kuffler S (1957) Change in organization in the receptive fields of the cat’s retina during dark adaptation. J Physiol 137(3):338–354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Békésy GV (1968a) Brightness distribution across the Mach bands measured with flicker photometry, and the linearity of sensory nervous interaction. J Opt Soc Am 58(1):1–8

    Article  Google Scholar 

  • Békésy GV (1968b) Mach- and Hering-type lateral inhibition in vision. Vis Res 8(12):1483–1499

    Article  Google Scholar 

  • Blakeslee B, McCourt ME (1999) A multiscale spatial filtering account of the White effect, simultaneous brightness contrast and grating induction. Vis Res 39:4361–4377

    Article  CAS  PubMed  Google Scholar 

  • Bowers JS (2009) On the biological plausibility of grandmother cells: implications for neural network theories in psychology and neuroscience. Psychol Rev 116:220–251

    Article  PubMed  Google Scholar 

  • Campbell FW, Robson JG (1968) Application of Fourier analysis to the visibility of gratings. J Physiol 197(3):551–566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De MS, Li B (1998) Derivative computation by multiscale filters. Image Vis Comput 16:43–53

    Article  Google Scholar 

  • Enroth-Cugell C, Lennie P (1975) The control of retinal ganglion cell discharge by receptive field surrounds. J Physiol 247(3):551–578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fiorentini A (1972) Mach band phenomena. In: Jameson D, Hurvich LM (eds) Handbook of sensory physiology, vol. VII/4. Visual psychophysics. Springer, New York, pp 188–201

    Google Scholar 

  • Ghosh K, Sarkar S, Bhaumik K, (2005a) Image enhancement by high-order gaussian derivative filters simulating non-classical receptive fields in the human visual system. In: Pattern recognition and machine intelligence: lecture notes in computer science, vol 3776. Springer, Berlin, pp 453–458

  • Ghosh K, Sarkar S, Bhaumik K (2005b) A possible mechanism of zero-crossing detection using the concept of extended classical receptive field model of retinal ganglion cells. Biol Cybern 93(1):1–5

    Article  CAS  PubMed  Google Scholar 

  • Ghosh K, Sarkar S, Bhaumik K (2006) A possible explanation of the low-level brightness-contrast illusions in the light of an extended classical receptive field model of retinal ganglion cells. Biol Cybern 94(2):89–96

    Article  PubMed  Google Scholar 

  • Ghosh K, Sarkar S, Bhaumik K (2007a) Understanding image structure from a new multi-scale representation of higher order derivative filters. Image Vis Comput 25(8):1228–1238

    Article  Google Scholar 

  • Ghosh K, Bhaumik K, Sarkar S (2007b) Retinomorphic image processing. Prog Brain Res 168:175–191

    Article  Google Scholar 

  • Ghosh K, Sarkar S, Bhaumik K (2009) A possible mechanism of stochastic resonance in the light of an extra classical receptive field model of retinal ganglion cells. Biol Cybern 100:351–359

    Article  PubMed  Google Scholar 

  • Gross CG (2002) Genealogy of grandmother cell. Neuroscientist 8(5):512–518

    Article  PubMed  Google Scholar 

  • Hartline HK (1940) The receptive fields of optic nerve fibres. Am J Physiol 130(4):690–699

    Google Scholar 

  • Hubel DH, Wiesel TN (1962) Receptive fields binocular interaction and functional architecture in the cat’s visual cortex. J Physiol 60:106–154

    Article  Google Scholar 

  • Kuffler SW (1952) Neurons in the retina: organization, inhibition and excitation problems. Cold Spring Harb Symp Quant Biol 17:281–292

    Article  CAS  PubMed  Google Scholar 

  • Marr D, Hildreth E (1980) Theory of edge detection. Proc R Soc Lond B 207:187–217

    Article  CAS  PubMed  Google Scholar 

  • Marr D (1982) Vision: a computational investigation into the human representation and processing of visual information. WH Freeman, New York

    Google Scholar 

  • Matthews ML (1966) Appearance of Mach bands for short durations and at sharply focused contours. J Opt Soc Am 56(10):1401–1402

    Article  Google Scholar 

  • Morrone MC, Ross J, Burr DC, Owens R (1986) Mach bands are phase dependent. Nature 324:250–253

    Article  Google Scholar 

  • Pessoa L (1996) Mach bands: How many models are possible? Recent experimental findings and modelling attempts. Vis Res 36(19):3205–3227

    Article  CAS  PubMed  Google Scholar 

  • Poggio T, Voorhees H, Yuille A (1988) A regularized solution of edge detection. J Complex 4(2):106–123

    Article  Google Scholar 

  • Ratliff F (ed) (1965) Mach bands: quantitative studies on neural networks in the retina. Holden-Day, San Francisco

    Google Scholar 

  • Ratliff F, Milkman N, Rennert N (1983) Attenuation of Mach bands by adjacent stimuli. Proc Nat Acad Sci 80(14):4554–4558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ratliff F (1984) Why Mach bands are not seen at the edges of a step. Vis Res 24(2):163–165

    Article  CAS  PubMed  Google Scholar 

  • Robinson A, Hammon P, de Sa V (2007) Explaining brightness illusions using spatial filtering and local response normalization. Vis Res 47:1631–1644

    Article  PubMed  Google Scholar 

  • Rodieck RW, Stone J (1965) Analysis of receptive fields of cat retinal ganglion cells. J Neurophysiol 28(5):833–849

    Google Scholar 

  • Ross J, Holt JJ, Johnstone J (1981) High frequency limitation on Mach bands. Vis Res 21(7):1165–1167

    Article  CAS  PubMed  Google Scholar 

  • Ross J, Morrone MC, Burr DC (1989) The conditions under which Mach bands are visible. Vis Res 29(6):699–715

    Article  CAS  PubMed  Google Scholar 

  • Sceniak MP, Ringach DL, Hawken MJ, Shapley R (1999) Contrast’s effect on spatial summation by macaque V1 neurons. Nat Neurosci 2:733–739

    Article  CAS  PubMed  Google Scholar 

  • Sherman SM, Guillery RW (2006) Exploring the thalamus and its role in cortical function, 2nd edn. MIT Press, Cambridge

    Google Scholar 

  • Syrkin G, Yinon U, Gur M (1994) Simple cells may lie at the basis of Mach bands: evidence from physiological studies in the cat’s visual cortex. Exp Brain Res 102(2):319–326

    Article  CAS  PubMed  Google Scholar 

  • Tsui JM, Pack CC (2011) Contrast sensitivity of MT receptive field centers and surrounds. J Neurophysiol 106(4):1888–1900

    Article  PubMed  Google Scholar 

  • Tolhurst DJ (1972) On the possible existence of edge detector neuron in the human visual system. Vis Res 12:797–804

    Article  CAS  PubMed  Google Scholar 

  • Wielaard J, Sajda P (2005) Neural mechanisms of contrast dependent receptive field size in V1. In: Proceedings of the neural information processing systems conference (NIPS 2005), pp 1505–1512

  • Young RA (1987) The Gaussian derivative model for vision: I. Retinal mechanisms. Spat Vis 2:273–293

    Article  CAS  PubMed  Google Scholar 

  • Young RA, Lesperance RM, Meyer WW (2001) The Gaussian derivative model for spatial–temporal vision: I. Cortical model. Spat Vis 14:261–319

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kuntal Ghosh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mazumdar, D., Mitra, S., Ghosh, K. et al. A DOG filter model of the occurrence of Mach bands on spatial contrast discontinuities. Biol Cybern 110, 229–236 (2016). https://doi.org/10.1007/s00422-016-0683-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00422-016-0683-9

Keywords

Navigation