Biological Cybernetics

, Volume 110, Issue 1, pp 81–89 | Cite as

Suppression of displacement detection in the presence and absence of eye movements: a neuro-computational perspective

  • Julia Bergelt
  • Fred H. Hamker
Letter to the Editor


Understanding the subjective experience of a visually stable world during eye movements has been an important research topic for many years. Various studies were conducted to reveal fundamental mechanisms of this phenomenon. For example, in the paradigm saccadic suppression of displacement (SSD), it has been observed that a small displacement of a saccade target could not easily be reported if this displacement took place during a saccade. New results from Zimmermann et al. (J Neurophysiol 112(12):3066–3076, 2014) show that the effect of being oblivious to small displacements occurs not only during saccades, but also if a mask is introduced while the target is displaced. We address the question of how neurons in the parietal cortex may be connected to each other to account for the SSD effect in experiments involving a saccade and equally well in the absence of an eye movement while perception is disrupted by a mask.


Space perception Saccadic suppression of displacement  Masking Computational model 



This work has been supported by the European Union’s Seventh Framework Programme (FET, Neuro-Bio-Inspired Systems: Spatial Cognition) under Grant Agreement No. 600785. We thank Eckart Zimmermann, Sabine Born, Gereon Fink and Patrick Cavanagh for providing us the experimental data. Furthermore, we thank Sabine Born and Patrick Cavanagh for their comments on a previous manuscript.


  1. Braddick O (1973) The masking of apparent motion in random-dot patterns. Vis Res 13(2):355–369CrossRefPubMedGoogle Scholar
  2. Braddick O (1974) A short-range process in apparent motion. Vis Res 14(7):519–527CrossRefPubMedGoogle Scholar
  3. Bridgeman B, Hendry D, Stark L (1975) Failure to detect displacement of the visual world during saccadic eye movements. Vis Res 15:719–722CrossRefPubMedGoogle Scholar
  4. Burr DC, Holt J, Johnstone JR, Ross J (1982) Selective depression of motion sensitivity during saccades. J Physiol 333:1–15PubMedCentralCrossRefPubMedGoogle Scholar
  5. Burr DC, Ross J, Binda P, Morrone MC (2010) Saccades compress space, time and number. Trends Cogn Sci 14:528–533CrossRefPubMedGoogle Scholar
  6. Campbell FW, Wurtz RH (1978) Saccadic omission: why we do not see a grey-out during a saccadic eye movement. Vis Res 18:1297–1303CrossRefPubMedGoogle Scholar
  7. Cassanello CR, Ferrera VP (2007) Computing vector differences using a gain field-like mechanism in monkey frontal eye field. J Physiol 582(2):647–664PubMedCentralCrossRefPubMedGoogle Scholar
  8. Deubel H, Schneider WX, Bridgeman B (1996) Postsaccadic target blanking prevents saccadic suppression of image displacement. Vis Res 36(7):985–996CrossRefPubMedGoogle Scholar
  9. Ferraina S, Par M, Wurtz RH (2002) Comparison of cortico-cortical and cortico-collicular signals for the generation of saccadic eye movements. J Neurophysiol 87(2):845–858PubMedGoogle Scholar
  10. Hamker FH (2005) The reentry hypothesis: the putative interaction of the frontal eye field, ventrolateral prefrontal cortex, and areas v4, it for attention and eye movement. Cereb Cortex 15:431–447CrossRefPubMedGoogle Scholar
  11. Hamker FH (2007) The mechanisms of feature inheritance as predicted by a systems-level model of visual attention and decision making. Adv Cogn Psychol 3:111–123PubMedCentralCrossRefGoogle Scholar
  12. Hamker FH, Zirnsak M, Calow D, Lappe M (2008) The peri-saccadic perception of objects and space. PLoS Comput Biol 4(2):1–15CrossRefGoogle Scholar
  13. Hamker FH, Zirnsak M, Ziesche A, Lappe M (2011) Computational models of spatial updating in peri-saccadic perception. Philos Trans R Soc Lond B Biol Sci 336(1564):554–571CrossRefGoogle Scholar
  14. Herzog MH, Koch C (2001) Seeing properties of an invisible object: feature inheritance and shine-through. Proc Nat Acad Sci 98(7):4271–4275PubMedCentralCrossRefPubMedGoogle Scholar
  15. Kiani R, Hanks TD, Shadlen MN (2008) Bounded integration in parietal cortex underlies decisions even when viewing duration is dictated by the environment. J Neurosci 28(12):3017–3029CrossRefPubMedGoogle Scholar
  16. Lappe M, Michels L, Awater H (2010) Visual and nonvisual factors in perisaccadic compression of space. In: Nijhawan R, Khurana B (eds) Space and time in perception and action. Cambridge University Press, Cambridge, pp 38–51CrossRefGoogle Scholar
  17. Melcher D, Colby CL (2008) Trans-saccadic perception. Trends Cogn Sci 12(12):466–473CrossRefPubMedGoogle Scholar
  18. Niemeier M, Crawford JD, Tweed DB (2003) Optimal transsaccadic integration explains distorted spatial perception. Nature 422(6927):76–80CrossRefPubMedGoogle Scholar
  19. Ostendorf F, Liebermann D, Ploner CJ (2013) A role of the human thalamus in predicting the perceptual consequences of eye movements. Front Syst Neurosci 7:10Google Scholar
  20. Pouget A, Deneve S, Duhamel JR (2002) A computational perspective on the neural basis of multisensory spatial representations. Nat Rev Neurosci 3:741–747CrossRefPubMedGoogle Scholar
  21. Ross J, Morrone MC, Goldberg ME, Burr DC (2001) Changes in visual perception at the time of saccades. Trends Neurosci 24:113–121CrossRefPubMedGoogle Scholar
  22. Salinas E, Sejnowski TJ (2001) Gain modulation in the central nervous system: where behavior, neurophysiology, and computation meet. Neuroscientist 7(5):430–440PubMedCentralCrossRefPubMedGoogle Scholar
  23. Shioiri S, Cavanagh P (1989) Saccadic suppression of low-level motion. Vis Res 29(8):915–928CrossRefPubMedGoogle Scholar
  24. Sommer MA, Wurtz RH (2004) What the brain stem tells the frontal cortex. I. Oculomotor signals sent from superior colliculus to frontal eye field via mediodorsal thalamus. J Neurophysiol 91(3):1381–1402CrossRefPubMedGoogle Scholar
  25. Stanford TR, Shankar S, Massoglia DP, Costello MG, Salinas E (2010) Perceptual decision making in less than 30 milliseconds. Nat Neurosci 13(3):379–385PubMedCentralCrossRefPubMedGoogle Scholar
  26. Volkmann FC, Riggs LA, White KD, Moore RK (1978) Contrast sensitivity during saccadic eye movements. Vis Res 18(9):1193–1199CrossRefPubMedGoogle Scholar
  27. Wang X, Zhang M, Cohen IS, Goldberg ME (2007) The proprioceptive representation of eye position in monkey primary somatosensory cortex. Nat Neurosci 10:640–646CrossRefPubMedGoogle Scholar
  28. Watson TL, Krekelberg B (2009) The relationship between saccadic suppression and perceptual stability. Curr Biol 19(12):1040–1043PubMedCentralCrossRefPubMedGoogle Scholar
  29. Wurtz RH (2008) Neuronal mechanisms of visual stability. Vis Res 48(20):2070–2089PubMedCentralCrossRefPubMedGoogle Scholar
  30. Xu BY, Karachi C, Goldberg ME (2012) The postsaccadic unreliability of gain fields renders it unlikely that the motor system can use them to calculate target position in space. Neuron 76(6):1201–1209PubMedCentralCrossRefPubMedGoogle Scholar
  31. Ziesche A, Hamker FH (2011) A computational model for the influence of corollary discharge and proprioception on the perisaccadic mislocalization of briefly presented stimuli in complete darkness. J Neurosci 31(48):17392–17405CrossRefPubMedGoogle Scholar
  32. Ziesche A, Hamker FH (2014) Brain circuits underlying visual stability across eye movements—converging evidence for a neuro-computational model of area LIP. Front Comput Neurosci 8(25):1–15Google Scholar
  33. Zimmermann E, Born S, Fink GR, Cavanagh P (2014) Masking produces compression of space and time in the absence of eye movements. J Neurophysiol 112(12):3066–3076PubMedCentralCrossRefPubMedGoogle Scholar
  34. Zirnsak M, Moore T (2014) Saccades and shifting receptive fields: Anticipating consequences or selecting targets? Trends Cogn Sci 18(12):621–628PubMedCentralCrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Artificial Intelligence, Computer ScienceChemnitz University of TechnologyChemnitzGermany

Personalised recommendations