Skip to main content
Log in

Suppression of displacement detection in the presence and absence of eye movements: a neuro-computational perspective

  • Letter to the Editor
  • Published:
Biological Cybernetics Aims and scope Submit manuscript

Abstract

Understanding the subjective experience of a visually stable world during eye movements has been an important research topic for many years. Various studies were conducted to reveal fundamental mechanisms of this phenomenon. For example, in the paradigm saccadic suppression of displacement (SSD), it has been observed that a small displacement of a saccade target could not easily be reported if this displacement took place during a saccade. New results from Zimmermann et al. (J Neurophysiol 112(12):3066–3076, 2014) show that the effect of being oblivious to small displacements occurs not only during saccades, but also if a mask is introduced while the target is displaced. We address the question of how neurons in the parietal cortex may be connected to each other to account for the SSD effect in experiments involving a saccade and equally well in the absence of an eye movement while perception is disrupted by a mask.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  • Braddick O (1973) The masking of apparent motion in random-dot patterns. Vis Res 13(2):355–369

    Article  CAS  PubMed  Google Scholar 

  • Braddick O (1974) A short-range process in apparent motion. Vis Res 14(7):519–527

    Article  CAS  PubMed  Google Scholar 

  • Bridgeman B, Hendry D, Stark L (1975) Failure to detect displacement of the visual world during saccadic eye movements. Vis Res 15:719–722

    Article  CAS  PubMed  Google Scholar 

  • Burr DC, Holt J, Johnstone JR, Ross J (1982) Selective depression of motion sensitivity during saccades. J Physiol 333:1–15

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Burr DC, Ross J, Binda P, Morrone MC (2010) Saccades compress space, time and number. Trends Cogn Sci 14:528–533

    Article  PubMed  Google Scholar 

  • Campbell FW, Wurtz RH (1978) Saccadic omission: why we do not see a grey-out during a saccadic eye movement. Vis Res 18:1297–1303

    Article  CAS  PubMed  Google Scholar 

  • Cassanello CR, Ferrera VP (2007) Computing vector differences using a gain field-like mechanism in monkey frontal eye field. J Physiol 582(2):647–664

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Deubel H, Schneider WX, Bridgeman B (1996) Postsaccadic target blanking prevents saccadic suppression of image displacement. Vis Res 36(7):985–996

    Article  CAS  PubMed  Google Scholar 

  • Ferraina S, Par M, Wurtz RH (2002) Comparison of cortico-cortical and cortico-collicular signals for the generation of saccadic eye movements. J Neurophysiol 87(2):845–858

    PubMed  Google Scholar 

  • Hamker FH (2005) The reentry hypothesis: the putative interaction of the frontal eye field, ventrolateral prefrontal cortex, and areas v4, it for attention and eye movement. Cereb Cortex 15:431–447

    Article  PubMed  Google Scholar 

  • Hamker FH (2007) The mechanisms of feature inheritance as predicted by a systems-level model of visual attention and decision making. Adv Cogn Psychol 3:111–123

    Article  PubMed Central  Google Scholar 

  • Hamker FH, Zirnsak M, Calow D, Lappe M (2008) The peri-saccadic perception of objects and space. PLoS Comput Biol 4(2):1–15

    Article  Google Scholar 

  • Hamker FH, Zirnsak M, Ziesche A, Lappe M (2011) Computational models of spatial updating in peri-saccadic perception. Philos Trans R Soc Lond B Biol Sci 336(1564):554–571

    Article  Google Scholar 

  • Herzog MH, Koch C (2001) Seeing properties of an invisible object: feature inheritance and shine-through. Proc Nat Acad Sci 98(7):4271–4275

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kiani R, Hanks TD, Shadlen MN (2008) Bounded integration in parietal cortex underlies decisions even when viewing duration is dictated by the environment. J Neurosci 28(12):3017–3029

    Article  CAS  PubMed  Google Scholar 

  • Lappe M, Michels L, Awater H (2010) Visual and nonvisual factors in perisaccadic compression of space. In: Nijhawan R, Khurana B (eds) Space and time in perception and action. Cambridge University Press, Cambridge, pp 38–51

    Chapter  Google Scholar 

  • Melcher D, Colby CL (2008) Trans-saccadic perception. Trends Cogn Sci 12(12):466–473

    Article  PubMed  Google Scholar 

  • Niemeier M, Crawford JD, Tweed DB (2003) Optimal transsaccadic integration explains distorted spatial perception. Nature 422(6927):76–80

    Article  CAS  PubMed  Google Scholar 

  • Ostendorf F, Liebermann D, Ploner CJ (2013) A role of the human thalamus in predicting the perceptual consequences of eye movements. Front Syst Neurosci 7:10

  • Pouget A, Deneve S, Duhamel JR (2002) A computational perspective on the neural basis of multisensory spatial representations. Nat Rev Neurosci 3:741–747

    Article  CAS  PubMed  Google Scholar 

  • Ross J, Morrone MC, Goldberg ME, Burr DC (2001) Changes in visual perception at the time of saccades. Trends Neurosci 24:113–121

    Article  CAS  PubMed  Google Scholar 

  • Salinas E, Sejnowski TJ (2001) Gain modulation in the central nervous system: where behavior, neurophysiology, and computation meet. Neuroscientist 7(5):430–440

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Shioiri S, Cavanagh P (1989) Saccadic suppression of low-level motion. Vis Res 29(8):915–928

    Article  CAS  PubMed  Google Scholar 

  • Sommer MA, Wurtz RH (2004) What the brain stem tells the frontal cortex. I. Oculomotor signals sent from superior colliculus to frontal eye field via mediodorsal thalamus. J Neurophysiol 91(3):1381–1402

    Article  PubMed  Google Scholar 

  • Stanford TR, Shankar S, Massoglia DP, Costello MG, Salinas E (2010) Perceptual decision making in less than 30 milliseconds. Nat Neurosci 13(3):379–385

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Volkmann FC, Riggs LA, White KD, Moore RK (1978) Contrast sensitivity during saccadic eye movements. Vis Res 18(9):1193–1199

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Zhang M, Cohen IS, Goldberg ME (2007) The proprioceptive representation of eye position in monkey primary somatosensory cortex. Nat Neurosci 10:640–646

    Article  CAS  PubMed  Google Scholar 

  • Watson TL, Krekelberg B (2009) The relationship between saccadic suppression and perceptual stability. Curr Biol 19(12):1040–1043

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wurtz RH (2008) Neuronal mechanisms of visual stability. Vis Res 48(20):2070–2089

    Article  PubMed Central  PubMed  Google Scholar 

  • Xu BY, Karachi C, Goldberg ME (2012) The postsaccadic unreliability of gain fields renders it unlikely that the motor system can use them to calculate target position in space. Neuron 76(6):1201–1209

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ziesche A, Hamker FH (2011) A computational model for the influence of corollary discharge and proprioception on the perisaccadic mislocalization of briefly presented stimuli in complete darkness. J Neurosci 31(48):17392–17405

    Article  CAS  PubMed  Google Scholar 

  • Ziesche A, Hamker FH (2014) Brain circuits underlying visual stability across eye movements—converging evidence for a neuro-computational model of area LIP. Front Comput Neurosci 8(25):1–15

    Google Scholar 

  • Zimmermann E, Born S, Fink GR, Cavanagh P (2014) Masking produces compression of space and time in the absence of eye movements. J Neurophysiol 112(12):3066–3076

    Article  PubMed Central  PubMed  Google Scholar 

  • Zirnsak M, Moore T (2014) Saccades and shifting receptive fields: Anticipating consequences or selecting targets? Trends Cogn Sci 18(12):621–628

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work has been supported by the European Union’s Seventh Framework Programme (FET, Neuro-Bio-Inspired Systems: Spatial Cognition) under Grant Agreement No. 600785. We thank Eckart Zimmermann, Sabine Born, Gereon Fink and Patrick Cavanagh for providing us the experimental data. Furthermore, we thank Sabine Born and Patrick Cavanagh for their comments on a previous manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fred H. Hamker.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bergelt, J., Hamker, F.H. Suppression of displacement detection in the presence and absence of eye movements: a neuro-computational perspective. Biol Cybern 110, 81–89 (2016). https://doi.org/10.1007/s00422-015-0677-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00422-015-0677-z

Keywords

Navigation