Skip to main content

Advertisement

Log in

Neural processes in symmetry perception: a parallel spatio-temporal model

  • Original Paper
  • Published:
Biological Cybernetics Aims and scope Submit manuscript

Abstract

Symmetry is usually computationally expensive to detect reliably, while it is relatively easy to perceive. In spite of many attempts to understand the neurofunctional properties of symmetry processing, no symmetry-specific activation was found in earlier cortical areas. Psychophysical evidence relating to the processing mechanisms suggests that the basic processes of symmetry perception would not perform a serial, point-by-point comparison of structural features but rather operate in parallel. Here, modeling of neural processes in psychophysical detection of bilateral texture symmetry is considered. A simple fine-grained algorithm that is capable of performing symmetry estimation without explicit comparison of remote elements is introduced. A computational model of symmetry perception is then described to characterize the underlying mechanisms as one-dimensional spatio-temporal neural processes, each of which is mediated by intracellular horizontal connections in primary visual cortex and adopts the proposed algorithm for the neural computation. Simulated experiments have been performed to show the efficiency and the dynamics of the model. Model and human performances are comparable for symmetry perception of intensity images. Interestingly, the responses of V1 neurons to propagation activities reflecting higher-order perceptual computations have been reported in neurophysiologic experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Angelucci A, Levitt JB, Walton EJS, Hupe J, Bullier J, Lund JS (2002) Circuits for local and global signal integration in primary visual cortex. J Neurosci 22(19):8633–8646

    PubMed  CAS  Google Scholar 

  • Barlow HB, Reeves BC (1979) The versatility and absolute efficiency of detecting mirror symmetry in random dot displays. Vis Res 19:783–793

    Article  PubMed  CAS  Google Scholar 

  • Bonneh Y, Reisfeld D, Yeshurun Y (2002) Quantification of local symmetry: application to texture discrimination. In: Tyler CW (ed) Human symmetry perception and its computational analysis. Lawrence Erlbaum Associates, Mahwah, pp 304–314

    Google Scholar 

  • Bosking WH, Zhang Y, Schofield B, Fitzpatrick D (1997) Orientation selectivity and the arrangement of horizontal connections in tree shrew striate cortex. J Neurosci 17(6):2112–2127

    PubMed  CAS  Google Scholar 

  • Bruce V, Morgan M (1975) Violations of symmetry and repetition in visual patterns. Perception 4:239–249

    Article  Google Scholar 

  • Carmody D, Nodine C, Locher P (1977) Global detection of symmetry. Percept Motor Skills 45:1267–1273

    Article  PubMed  CAS  Google Scholar 

  • Campbell SR, Wang DL, Jayaprakash C (1999) Synchrony and desynchrony in integrate-and-fire oscillators. Neural Comput 11:1595–11619

    Article  PubMed  CAS  Google Scholar 

  • Chen CC, Tyler CW, Liu CL, Wang YH (2005) lateral modulation of BOLD activation in unstimulated regions of the human visual cortex. Neuroimage 24:802–809

    Article  PubMed  Google Scholar 

  • Dakin SC, Herbert AM (1998) The spatial region of integration for visual symmetry detection. Proc R Soc Lond B 265:659–664

    Article  CAS  Google Scholar 

  • Dakin SC, Hess RF (1997) The spatial mechanisms mediating symmetry perception. Vis Res 37:2915–2930

    Article  PubMed  CAS  Google Scholar 

  • Dakin SC, Watt RJ (1994) Detection of bilateral symmetry using spatial filters. Spatial Vis 8:393–413

    Article  CAS  Google Scholar 

  • Driver J, Baylis GC, Rafal RD (1992) Preserved figure-ground segregation and symmetry perception in visual neglect. Nature 360:73–75

    Article  PubMed  CAS  Google Scholar 

  • Driver J, Davis G, Ricciardelli P, Kidd P, Maxwell E, Baron-Cohen S (1999) Gaze perception triggers reflexive spatio-temporal orienting. Visual Cogn 5:509–540

    Article  Google Scholar 

  • Dry M (2008) Using relational structure to detect symmetry: a voronoi tessellation based model of symmetry perception. Acta Psychol 128:75–90

    Article  Google Scholar 

  • Gray CM, Singer W (1989) Stimulus-specific neuronal oscillations in orientation columns of cat visual cortex. Proc Natl Acad Sci 86(5):1698–1702

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Gurnsey R, Herbert AM, Kenemy J (1998) Bilateral symmetry embedded in noise is detected accurately only at fixation. Vis Res 38:3795–3803

    Article  PubMed  CAS  Google Scholar 

  • Herbert AM, Overbury O, Singh J, Faubert J (2002) Aging and bilateral symmetry detection. J Gerontol Ser B: Psychol Sci Soc Sci 57:241–245

    Article  Google Scholar 

  • Julesz B (1996) Binocular disappearance of monocular symmetry. Science 153:657–658

    Article  Google Scholar 

  • Kanwisher N (2000) Domain specificity in face perception. Nat Neurosci 3:759–763

    Article  PubMed  CAS  Google Scholar 

  • Kimia BB (2003) On the role of medial geometry in human vision. J Physiol Paris 97(2–3):155–190

    Article  PubMed  Google Scholar 

  • Kiryati N, Gofman Y (1998) Detecting symmetry in grey level images: the global optimization approach. Intl J Comput Vis 29:29–45

    Article  Google Scholar 

  • Kovesi P (1999) Image features from phase congruency. Videre: J Comput Vis Res 1(3):2–26

    Google Scholar 

  • Lee TS (1996) Neurophysiological evidence for image segmentation and medial axis computation in primate V1. In: Computation and neural system, proceedings of the fourth annual computational neuroscience conference. Kluwer, The Netherlands

  • Lee TS, Mumford D, Romero R, Lamme VA (1998) The role of the primary visual cortex in higher level vision. Vis Res 38:2429–2454

    Article  PubMed  CAS  Google Scholar 

  • Mancini S, Sally SL, Gurnsey R (2005) Detection of symmetry and antisymmetry. Vis Res 45:2145–2160

    Article  PubMed  Google Scholar 

  • Michalewicz Z (1996) Genetic algorithm + data structures = evolution programming, 3rd edn. Springer, New York

    Book  Google Scholar 

  • Moller AP, Swaddle JP (1997) Asymmetry, developmental stability and evolution. Oxford University Press, Oxford

    Google Scholar 

  • Morrone MC, Burr DC (1988) Feature detection in human vision: a phase-dependent energy model. Proc R Soc Lond B 235:221–245

    Article  PubMed  CAS  Google Scholar 

  • Norcia AM, Candy TR, Petter MW, Vildavski VY, Tyler CW (2002) Temporal dynamics of the human response to symmetry. J Vis 2:132–139

    Article  PubMed  Google Scholar 

  • Oka S, Victor JD, Conte MM, Yanagida T (2007) VEPs elicited by local correlations and global symmetry: characteristics and interactions. Vis Res 47:2212–2222

    Article  PubMed Central  PubMed  Google Scholar 

  • Osorio D (1996) Symmetry detection by categorization of spatial phase, a model. Proc R Soc Lond B 263:105–110

    Google Scholar 

  • Palmer SE (1983) The psychology of perceptual organization. In: Beck J, Hope B, Rosenfeld A (eds) Human and machine vision. Academic Press, New York, pp 269–339

    Google Scholar 

  • Poirier FJAM, Wilson HR (2010) A biologically plausible model of human shape symmetry perception. J Vis 10(1):1–16

    PubMed  Google Scholar 

  • Rainville SJM, Kingdom FAA (1999) Spatial-scale contribution to the detection of mirror symmetry in fractal noise. J Opt Soc Am A 16:2112–2123

    Article  CAS  Google Scholar 

  • Rainville SJM, Kingdom FAA (2000) The functional role of oriented spatial filters in the perception of mirror symmetry-psychophysics and modelling. Vis Res 40:2621–2644

    Article  PubMed  CAS  Google Scholar 

  • Rainville SJM, Kingdom FAA (2002) Scale invariance is driven by stimulus density. Vis Res 42:351–367

    Article  PubMed  Google Scholar 

  • Rhodes G, Proffitt F, Grady JM, Sumich A (1998) Facial symmetry and the perception of beauty. Psychon Bull Rev 5:659–669

    Article  Google Scholar 

  • Royer FL (1981) Detection of symmetry. J Exp Psychol: Hum Percept Perform 7:1186–1210

    CAS  Google Scholar 

  • Schmidt KE, Goebel R, Lowell S, Singer W (1997) The perceptual grouping criterion of colinearity is reflected by anisotropies of connections in the primary visual cortex. Eur J Neurosci 9:1083–1089

    Article  PubMed  CAS  Google Scholar 

  • Scognamillo R, Rhodes G, Morrone C (2003) A feature-based model of symmetry detection. Proc R Soc Lond B 270:1727–1733

    Article  Google Scholar 

  • Thornhill R, Gangestad SW (1994) Human fluctuating asymmetry and sexual behavior. Psychol Sci 5:297–302

    Article  Google Scholar 

  • Ts’o DY, Gilbert CD, Wiesel TN (1986) Relationships between horizontal interaction and functional architecture in cat striate cortex as revealed by cross-correlation analysis. J Neurosci 6:1160–1170

    PubMed  Google Scholar 

  • Tyler CW, Baseler HA (1998) Properties of the middle occipital gyrus: an fMRI study. Soc Neurosci Abstr 24:1507

    Google Scholar 

  • Tyler CW, Baseler HA, Kontsevich LL, Likova LT, Wade AR, Wandell BA (2005) Predominantly extra-retinotopic cortical response to pattern symmetry. Neuroimage 15:306–314

    Article  Google Scholar 

  • Tyler CW, Hardage L, Miller RT (1995) Multiple mechanisms for the detection of mirror symmetry. Spatial Vis 9:79–100

    Article  CAS  Google Scholar 

  • Ullman S (1984) Visual routines. Cognition 18:97–159

    Article  PubMed  CAS  Google Scholar 

  • Van Der Helm PA, Leeuwenberg ELJ (2004) Holographic goodness is not that bad: reply to Olivers, Chater, and Watson. Psychol Rev 111:261–273

    Article  Google Scholar 

  • Van Der Helm PA (2010) Weber-Fechner behaviour in symmetry detection. Atten Percept Psychophys 72:1854–1864

    Article  PubMed  Google Scholar 

  • Van Der Zwan R, Leo E, Joung W, Latimer C, Wenderoth P (1998) Evidence that both area V1 and extrastriate visual cortex contribute to symmetry perception. Curr Biol 8:889–892

    Article  PubMed  Google Scholar 

  • Victor JD, Conte MM (2004) Local processes and spatial pooling in texture and symmetry detection. Vis Res 45:1063–1073

    Article  PubMed  Google Scholar 

  • Wagemans J, Van Gool L, Swinnen V, Van Horebeek J (1993) Higher-order structure in regularity detection. Vis Res 33:1067–1088

    Article  PubMed  CAS  Google Scholar 

  • Wagemans J (1997) Characteristics and models of human symmetry detection. Trends Cogn Sci 1:346–352

    Article  PubMed  CAS  Google Scholar 

  • Wagemans J (1999) Parallel visual processes in symmetry perception: normality and pathology. Docum Ophthalmol 95:359–370

    Article  CAS  Google Scholar 

  • Zhu T (2010) Fourier cross-sectional profile for vessel detection on retinal images. Comput Med Imaging Graph 34:203–212

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tao Zhu.

Additional information

Part of the work was performed when Tao Zhu was with AT&T Redditch UK.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhu, T. Neural processes in symmetry perception: a parallel spatio-temporal model. Biol Cybern 108, 121–131 (2014). https://doi.org/10.1007/s00422-013-0578-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00422-013-0578-y

Keywords

Navigation